Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gastrointest Endosc ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692517

RESUMEN

BACKGROUND AND AIMS: Studies have shown that hydrothermal duodenal mucosal ablation results in improved glycemic control. Recellularization via electroporation therapy (ReCET) is a novel endoscopic procedure that uses electroporation to induce cellular apoptosis and subsequent reepithelization. In this study, we aimed to eliminate exogenous insulin treatment in type 2 diabetes (T2D) patients through a single ReCET procedure combined with a glucagon-like peptide 1 receptor agonist. Feasibility, safety, and (dose) efficacy of ReCET were assessed. METHODS: This first-in-human study included patients with T2D on basal insulin (age, 28-75 years; body mass index, 24-40 kg/m2; glycosylated hemoglobin, ≤64 mmol/mol; C-peptide, ≥0.2 nmol/L). The electroporation dose was optimized during the study, starting with single 600 V and ending with double 750 V treatments. All patients underwent ReCET, after which insulin was discontinued and semaglutide (glucagon-like peptide-1 receptor agonist) was initiated. The primary endpoints were feasibility (procedure time [from catheter in to catheter out], technical success rate), safety, and efficacy (patients off insulin at 6 months; HbA1c, ≤58 mmol/mol). RESULTS: Fourteen patients underwent endoscopic ReCET. The median procedure time was 58 (interquartile range, 49-73) minutes. ReCET demonstrated a technical success rate of 100%. No device-related severe adverse events or severe hypoglycemic events were observed. At the 12-month follow-up, 12 (86%) patients remained off exogenous insulin therapy, with significant improvements in glycemic control and metabolic parameters. The 2 patients in whom insulin therapy was reintroduced both received ReCET at the lowest voltage (single 600 V). CONCLUSION: These results suggest that ReCET is feasible and safe. In combination with semaglutide, ReCET may be a promising therapeutic option to replace insulin therapy in selected T2D patients while improving glycemic control and metabolic health.

2.
Am J Gastroenterol ; 119(6): 1038-1046, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372280

RESUMEN

The metabolic syndrome (MetSyn) is currently one of the biggest global health challenges because of its impact on public health. MetSyn includes the cluster of metabolic disorders including obesity, high blood pressure, hyperglycemia, high triglyceride levels, and hepatic steatosis. Together, these abnormalities increase the cardiovascular risk of individuals and pose a threat to healthcare systems worldwide. To better understand and address this complex issue, recent research has been increasingly focusing on unraveling the delicate interplay between metabolic disorders and the intestines and more specifically our gut microbiome. The gut microbiome entails all microorganisms inhabiting the gastrointestinal tract and plays a pivotal role in metabolic processes and overall health of its host. Emerging evidence proves an association between the gut microbiome composition and aspects of MetSyn, such as obesity. Understanding these relationships is crucial because they offer valuable insights into the mechanisms underlying development and progression of metabolic disorders and possible treatment options. Yet, how should we interpret this relationship? This review focuses on the interplay between the gut and MetSyn. In addition, we have reviewed the existing evidence of the gut microbiome and its association with and impact on metabolic disorders, in an attempt to understand the complex interactions and nature of this association. We also explored potential therapeutic options targeting the gut to modify metabolic disorders and obesity.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Obesidad , Humanos , Síndrome Metabólico/microbiología , Microbioma Gastrointestinal/fisiología , Obesidad/microbiología , Intestinos/microbiología
3.
Gastrointest Endosc ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38280531

RESUMEN

BACKGROUND AND AIMS: The duodenum has been shown to play a key role in glucose homeostasis. Duodenal mucosal resurfacing (DMR) is an endoscopic procedure for patients with type 2 diabetes (T2D) in which the duodenal mucosa is hydrothermally ablated. DMR improves glycemic control, but the underlying mechanisms remain unclear. Here, we report changes in glucoregulatory hormones and indices of insulin sensitivity and beta cell function after DMR. METHODS: We included 28 patients on non-insulin glucose lowering medications who underwent open-label DMR and a mixed meal test (MMT) in Revita-1 or Revita-2. Inclusion criteria were hemoglobin A1c (HbA1c) 7.6-10.4% and BMI 24-40kg/m2. Baseline and 3-months MMT data included plasma glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) concentrations. Glucoregulatory hormones, insulin sensitivity indices (homeostatic model assessment for insulin resistance [HOMA-IR], Matsuda index [MI] and hepatic insulin resistance [HIR]), and beta cell function (insulinogenic index [IGI], disposition index [DI] and insulin secretion rate [ISR]) were assessed. RESULTS: Fasting insulin, glucagon, and C-peptide decreased significantly. Insulin sensitivity (HOMA-IR, MI, and HIR) and beta cell function (DI and ISR) all improved significantly. Decline in postprandial glucose, mainly driven by a decrease in fasting levels, was observed, as well as a decline in postprandial glucagon whereas GLP-1 and GIP did not change. CONCLUSIONS: Insulin sensitivity and insulin secretion improved 3 months after DMR. It is unlikely that incretin changes are responsible for improved glucose control after DMR. These data add to the growing evidence validating the duodenum as a therapeutic target for patients with T2D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA