Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Circ Res ; 106(2): 272-84, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20133912

RESUMEN

Acetylation of histone and nonhistone proteins provides a key mechanism for controlling signaling and gene expression in heart and kidney. Pharmacological inhibition of protein deacetylation with histone deacetylase (HDAC) inhibitors has shown promise in preclinical models of cardiovascular and renal disease. Efficacy of HDAC inhibitors appears to be governed by pleiotropic salutary actions on a variety of cell types and pathophysiological processes, including myocyte hypertrophy, fibrosis, inflammation and epithelial-to-mesenchymal transition, and occurs at compound concentrations below the threshold required to elicit toxic side effects. We review the roles of acetylation/deacetylation in the heart and kidney and provide rationale for extending HDAC inhibitors into clinical testing for indications involving these organs.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/prevención & control , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/prevención & control , Modelos Biológicos
3.
Expert Opin Ther Targets ; 13(7): 767-84, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19466913

RESUMEN

BACKGROUND: Stresses such as chronic hypertension and myocardial infarction can trigger the heart to undergo a remodeling process characterized by myocyte hypertrophy, myocyte death and fibrosis, often resulting in impaired cardiac function and heart failure. Recent studies suggest key roles for histone deacetylases (HDACs) in the control of pathological cardiac remodeling. OBJECTIVE/METHODS: Here, we review these target validation experiments and highlight non-cardiac functions of HDACs that will need to be addressed during development of HDAC-directed therapies for heart failure. RESULTS/CONCLUSIONS: HDACs are unique and attractive therapeutic targets for heart failure because of their positions far downstream in pathological signaling cascades. Confirmation of the validity and viability of approaches aimed at HDACs awaits in vivo proof-of-concept testing with novel small molecule regulators of these enzymes.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de Histona Desacetilasas , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/fisiopatología , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Insuficiencia Cardíaca/fisiopatología , Histona Desacetilasas/metabolismo , Humanos , Remodelación Ventricular/efectos de los fármacos
4.
J Biol Chem ; 281(44): 33487-96, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16950785

RESUMEN

The calcium/calmodulin-dependent phosphatase calcineurin plays a central role in the control of cardiomyocyte hypertrophy in response to pathological stimuli. Although calcineurin is present at high levels in normal heart, its activity appears to be unaffected by calcium during the course of a cardiac cycle. The mechanism(s) whereby calcineurin is selectively activated by calcium under pathological conditions has remained unclear. Here, we demonstrate that diverse signals for cardiac hypertrophy stimulate expression of canonical transient receptor potential (TRPC) channels. TRPC consists of a family of seven membrane-spanning nonselective cation channels that have been implicated in the nonvoltage-gated influx of calcium in response to G protein-coupled receptor signaling, receptor tyrosine kinase signaling, and depletion of internal calcium stores. TRPC3 expression is up-regulated in multiple rodent models of pathological cardiac hypertrophy, whereas TRPC5 expression is induced in failing human heart. We demonstrate that TRPC promotes cardiomyocyte hypertrophy through activation of calcineurin and its downstream effector, the nuclear factor of activated T cells transcription factor. These results define a novel role for TRPC channels in the control of cardiac growth, and suggest that a TRPC-derived pool of calcium contributes to selective activation of calcineurin in diseased heart.


Asunto(s)
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Anilidas/farmacología , Animales , Cardiomegalia/genética , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Masculino , Factores de Transcripción NFATC/metabolismo , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPC/genética , Tiadiazoles/farmacología
5.
Development ; 133(10): 2001-10, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16651542

RESUMEN

The final step in Hedgehog (Hh) signal transduction is post-translational regulation of the transcription factor, Cubitus interruptus (Ci). Ci resides in the cytoplasm in a latent form, where Hh regulates its processing into a transcriptional repressor or its nuclear access as a transcriptional activator. Levels of latent Ci are controlled by degradation, with different pathways activated in response to different levels of Hh. Here, we describe the roadkill (rdx) gene, which is expressed in response to Hh. The Rdx protein belongs to a conserved family of proteins that serve as substrate adaptors for Cullin3-mediated ubiquitylation. Overexpression of rdx reduced Ci levels and decreased both transcriptional activation and repression mediated by Ci. Loss of rdx allowed excessive accumulation of Ci. rdx manipulation in the eye revealed a novel role for Hh in the organization and survival of pigment and cone cells. These studies identify rdx as a limiting factor in a feedback loop that attenuates Hh responses through reducing levels of Ci. The existence of human orthologs for Rdx raises the possibility that this novel feedback loop also modulates Hh responses in humans.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Alelos , Animales , Mapeo Cromosómico , Cromosomas , Proteínas de Unión al ADN/genética , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Ojo/citología , Ojo/embriología , Ojo/ultraestructura , Genes de Insecto , Proteínas Hedgehog , Proteínas de Insectos/genética , Modelos Biológicos , Factores de Transcripción/genética , Transgenes
6.
Mol Cell Biol ; 24(24): 10636-49, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15572669

RESUMEN

Diverse pathological insults trigger a cardiac remodeling process during which myocytes undergo hypertrophy, with consequent decline in cardiac function and eventual heart failure. Multiple transcriptional regulators of pathological cardiac hypertrophy are controlled at the level of subcellular distribution. For example, prohypertrophic transcription factors belonging to the nuclear factor of activated T cells (NFAT) and GATA families are subject to CRM1-dependent nuclear export but are rapidly relocalized to the nucleus in response to cues for hypertrophic growth. Here, we demonstrate that the antihypertrophic chromatin-modifying enzyme histone deacetylase 5 (HDAC5) is shuttled out of the cardiomyocyte nucleus via a CRM1-mediated pathway in response to diverse signals for hypertrophy. CRM1 antagonists block the agonist-mediated nuclear export of HDAC 5 and repress pathological gene expression and associated hypertrophy of cultured cardiomyocytes. Conversely, CRM1 activity is dispensable for nonpathological cardiac gene activation mediated by thyroid hormone and insulin-like growth factor 1, agonists that fail to trigger the nuclear export of HDAC5. These results suggest a selective role for CRM1 in derepression of pathological cardiac genes via its neutralizing effects on antihypertrophic factors such as HDAC5. Pharmacological approaches targeting CRM1-dependent nuclear export in heart muscle may have salutary effects on cardiac function by suppressing maladaptive changes in gene expression evoked by stress signals.


Asunto(s)
Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Carioferinas/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Adenoviridae/genética , Adenilato Quinasa/análisis , Adenilato Quinasa/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/farmacología , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/metabolismo , Factor Natriurético Atrial/análisis , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/fisiología , Cardiomegalia/genética , Tamaño de la Célula , Supervivencia Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Fluoresceínas , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/metabolismo , Ventrículos Cardíacos/citología , Histona Desacetilasas/metabolismo , Immunoblotting , Carioferinas/antagonistas & inhibidores , Carioferinas/farmacología , Microscopía Fluorescente , Miocitos Cardíacos/citología , Pruebas de Precipitina , ARN/análisis , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Activación Transcripcional , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...