Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 284(52): 36175-36185, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19846563

RESUMEN

The molecular mechanism of thrombin activation by Na(+) remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na(+) forms. The extended scheme establishes that analysis of k(cat) unequivocally identifies allosteric transduction of Na(+) binding into enhanced catalytic activity. The thrombin mutant N143P features no Na(+)-dependent enhancement of k(cat) yet binds Na(+) with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absence of Na(+) confirm that Pro(143) abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu(192), which in turn controls the orientation of the Glu(192)-Gly(193) peptide bond and the correct architecture of the oxyanion hole. We conclude that Na(+) activates thrombin by securing the correct orientation of the Glu(192)-Gly(193) peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na(+) activation is present in all Na(+)-activated trypsin-like proteases.


Asunto(s)
Sustitución de Aminoácidos , Mutación Missense , Sodio/química , Trombina/química , Regulación Alostérica/genética , Cristalografía por Rayos X , Activación Enzimática/genética , Humanos , Enlace de Hidrógeno , Cinética , Unión Proteica/genética , Estructura Terciaria de Proteína/fisiología , Sodio/metabolismo , Relación Estructura-Actividad , Trombina/genética , Trombina/metabolismo
2.
J Biol Chem ; 284(36): 24098-105, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19586901

RESUMEN

The thrombin mutant W215A/E217A (WE) is a potent anticoagulant both in vitro and in vivo. Previous x-ray structural studies have shown that WE assumes a partially collapsed conformation that is similar to the inactive E* form, which explains its drastically reduced activity toward substrate. Whether this collapsed conformation is genuine, rather than the result of crystal packing or the mutation introduced in the critical 215-217 beta-strand, and whether binding of thrombomodulin to exosite I can allosterically shift the E* form to the active E form to restore activity toward protein C are issues of considerable mechanistic importance to improve the design of an anticoagulant thrombin mutant for therapeutic applications. Here we present four crystal structures of WE in the human and murine forms that confirm the collapsed conformation reported previously under different experimental conditions and crystal packing. We also present structures of human and murine WE bound to exosite I with a fragment of the platelet receptor PAR1, which is unable to shift WE to the E form. These structural findings, along with kinetic and calorimetry data, indicate that WE is strongly stabilized in the E* form and explain why binding of ligands to exosite I has only a modest effect on the E*-E equilibrium for this mutant. The E* --> E transition requires the combined binding of thrombomodulin and protein C and restores activity of the mutant WE in the anticoagulant pathway.


Asunto(s)
Sustitución de Aminoácidos , Anticoagulantes/química , Mutación Missense , Trombina/química , Animales , Anticoagulantes/metabolismo , Cristalografía por Rayos X , Humanos , Cinética , Ratones , Unión Proteica/genética , Proteína C/química , Proteína C/genética , Proteína C/metabolismo , Estructura Secundaria de Proteína/genética , Trombina/genética , Trombina/metabolismo , Trombomodulina/química , Trombomodulina/genética , Trombomodulina/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 28(2): 329-34, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17962622

RESUMEN

OBJECTIVE: Thrombin containing the mutations Trp215Ala and Glu217Ala (WE) selectively activates protein C and has potent antithrombotic effects in primates. The aim of this study was to delineate the molecular mechanism of direct WE-platelet interactions under static and shear conditions. METHODS AND RESULTS: Purified platelets under static conditions bound and spread on immobilized wild-type but not WE thrombin. In PPACK-anticoagulated blood under shear flow conditions, platelets tethered and rolled on both wild-type and WE thrombin, and these interactions were abrogated by the presence of a glycoprotein Ib (GPIb)-blocking antibody. Platelet deposition on collagen was blocked in the presence of WE, but not wild-type thrombin or prothrombin. WE also abrogated platelet tethering and rolling on immobilized von Willebrand factor in whole blood under shear flow. CONCLUSIONS: These observations demonstrate that the thrombin mutant WE, while not activating platelets, retains the ability to interact with platelets through GPIb, and inhibits GPIb-dependent binding to von Willebrand factor-collagen under shear.


Asunto(s)
Coagulación Sanguínea/fisiología , Proteínas Mutantes/fisiología , Activación Plaquetaria/fisiología , Complejo GPIb-IX de Glicoproteína Plaquetaria/fisiología , Trombina/genética , Trombina/fisiología , Adulto , Animales , Plaquetas/fisiología , Enzimas Inmovilizadas , Humanos , Ratones , Adhesividad Plaquetaria/fisiología , Proteínas Recombinantes , Reología , Trombina/química , Trombosis/fisiopatología , Factor de von Willebrand/fisiología
4.
Biophys Chem ; 131(1-3): 111-4, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17935858

RESUMEN

The interaction of Na(+) and K(+) with proteins is at the basis of numerous processes of biological importance. However, measurement of the kinetic components of the interaction has eluded experimentalists for decades because the rate constants are too fast to resolve with conventional stopped-flow methods. Using a continuous-flow apparatus with a dead time of 50 micro s we have been able to resolve the kinetic rate constants and entire mechanism of Na(+) binding to thrombin, an interaction that is at the basis of the procoagulant and prothrombotic roles of the enzyme in the blood.


Asunto(s)
Sodio/química , Trombina/química , Humanos , Cinética , Mutación , Trombina/genética
5.
J Biol Chem ; 282(37): 27165-27170, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17636263

RESUMEN

Little is known on the role of disulfide bonds in the catalytic domain of serine proteases. The Cys-191-Cys-220 disulfide bond is located between the 190 strand leading to the oxyanion hole and the 220-loop that contributes to the architecture of the primary specificity pocket and the Na+ binding site in allosteric proteases. Removal of this bond in thrombin produces an approximately 100-fold loss of activity toward several chromogenic and natural substrates carrying Arg or Lys at P1. Na+ activation is compromised, and no fluorescence change can be detected in response to Na+ binding. A 1.54-A resolution structure of the C191A/C220A mutant in the free form reveals a conformation similar to the Na+-free slow form of wild type. The lack of disulfide bond exposes the side chain of Asp-189 to solvent, flips the backbone O atom of Gly-219, and generates disorder in portions of the 186 and 220 loops defining the Na+ site. This conformation, featuring perturbation of the Na+ site but with the active site accessible to substrate, offers a possible representation of the recently identified E* form of thrombin. Disorder in the 186 and 220 loops and the flip of Gly-219 are corrected by the active site inhibitor H-D-Phe-Pro-Arg-CH(2)Cl, as revealed by the 1.8-A resolution structure of the complex. We conclude that the Cys-191-Cys-220 disulfide bond confers stability to the primary specificity pocket by shielding Asp-189 from the solvent and orients the backbone O atom of Gly-219 for optimal substrate binding. In addition, the disulfide bond stabilizes the 186 and 220 loops that are critical for Na+ binding and activation.


Asunto(s)
Disulfuros/química , Trombina/química , Trombina/fisiología , Sitio Alostérico , Cristalización , Cisteína , Conformación Proteica , Sodio/metabolismo , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 104(28): 11603-8, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17606903

RESUMEN

It has been proposed that the cleaved form of protease-activated receptor 3 (PAR3) acts as a cofactor for thrombin cleavage and activation of PAR4 on murine platelets, but the molecular basis of this physiologically important effect remains elusive. X-ray crystal structures of murine thrombin bound to extracellular fragments of the murine receptors PAR3 ((38)SFNGGPQNTFEEFPLSDIE(56)) and PAR4 ((51)KSSDKPNPR downward arrow GYPGKFCANDSDTLELPASSQA(81), downward arrow = site of cleavage) have been solved at 2.0 and 3.5 A resolution, respectively. The cleaved form of PAR3, traced in the electron density maps from Gln-44 to Glu-56, makes extensive hydrophobic and electrostatic contacts with exosite I of thrombin through the fragment (47)FEEFPLSDIE(56). Occupancy of exosite I by PAR3 allosterically changes the conformation of the 60-loop and shifts the position of Trp-60d approximately 10 A with a resulting widening of the access to the active site. The PAR4 fragment, traced entirely in the electron density maps except for five C-terminal residues, clamps Trp-60d, Tyr-60a, and the aryl-binding site of thrombin with Pro-56 and Pro-58 at the P2 and P4 positions and engages the primary specificity pocket with Arg-59. The fragment then leaves the active site with Gly-60 and folds into a short helical turn that directs the backbone away from exosite I and over the autolysis loop. The structures demonstrate that thrombin activation of PAR4 may occur with exosite I available to bind cofactor molecules, like the cleaved form of PAR3, whose function is to promote substrate diffusion into the active site by allosterically changing the conformation of the 60-loop.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Espacio Extracelular/enzimología , Fragmentos de Péptidos/metabolismo , Receptores de Trombina/metabolismo , Trombina/química , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Sitios de Unión , Moléculas de Adhesión Celular/química , Proteínas de Ciclo Celular , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Espacio Extracelular/metabolismo , Hidrólisis , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Unión Proteica , Receptores de Trombina/química , Trombina/genética , Trombina/metabolismo
7.
J Biol Chem ; 282(22): 16355-61, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17428793

RESUMEN

Unlike human thrombin, murine thrombin lacks Na+ activation due to the charge reversal substitution D222K in the Na+ binding loop. However, the enzyme is functionally stabilized in a Na+-bound form and is highly active toward physiologic substrates. The structural basis of this peculiar property is unknown. Here, we present the 2.2 A resolution x-ray crystal structure of murine thrombin in the absence of inhibitors and salts. The enzyme assumes an active conformation, with Ser-195, Glu-192, and Asp-189 oriented as in the Na+-bound fast form of human thrombin. Lys-222 completely occludes the pore of entry to the Na+ binding site and positions its side chain inside the pore, with the Nzeta atom H-bonded to the backbone oxygen atoms of Lys-185, Asp-186b, and Lys-186d. The same architecture is observed in the 1.75 A resolution structure of a thrombin chimera in which the human enzyme carries all residues defining the Na+ pore in the murine enzyme. These findings demonstrate that Na+ activation in thrombin is linked to the architecture of the Na+ pore. The molecular strategy of Na+ activation mimicry unraveled for murine thrombin is relevant to serine proteases and enzymes activated by monovalent cations in general.


Asunto(s)
Sodio/química , Trombina/química , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Cationes Monovalentes , Cristalografía por Rayos X , Activación Enzimática , Humanos , Ratones , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Unión Proteica/genética , Estructura Secundaria de Proteína , Sodio/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad , Trombina/genética , Trombina/metabolismo
8.
Phys Chem Chem Phys ; 9(11): 1291-306, 2007 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17347701

RESUMEN

Thrombin is a Na(+)-activated, allosteric serine protease that plays multiple functional roles in blood pathophysiology. Binding of Na(+) is the major driving force behind the procoagulant, prothrombotic and signaling functions of the enzyme. This review summarizes our current understanding of the molecular basis of thrombin allostery with special emphasis on the kinetic aspects of Na(+) activation. The molecular mechanism of thrombin allostery is a remarkable example of long-range communication that offers a paradigm for many other biological systems.


Asunto(s)
Coagulación Sanguínea/fisiología , Modelos Cardiovasculares , Modelos Químicos , Sodio/química , Sodio/metabolismo , Trombina/química , Trombina/metabolismo , Sitios de Unión , Simulación por Computador , Activación Enzimática , Modelos Moleculares , Unión Proteica , Relación Estructura-Actividad , Trombina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA