Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37849306

RESUMEN

OBJECTIVE: In Norway, 89% of patients with Amyotrophic lateral sclerosis (ALS) lacks a genetic diagnose. ALS genes and genes that cause other neuromuscular or neurodegenerative disorders extensively overlap. This population-based study examined whether patients with ALS have a family history of neurological disorders and explored the occurrence of rare genetic variants associated with other neurodegenerative or neuromuscular disorders. METHODS: During a two-year period, blood samples and clinical data from patients with ALS were collected from all 17 neurological departments in Norway. Our genetic analysis involved exome sequencing and bioinformatics filtering of 510 genes associated with neurodegenerative and neuromuscular disorders. The variants were interpreted using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 patients from a Norwegian population-based ALS cohort participated in this study. Thirty-one percent of the patients had first- or second-degree relatives with other neurodegenerative disorders, most commonly dementia and Parkinson's disease. The genetic analysis identified 20 possible pathogenic variants, in ATL3, AFG3L2, ATP7A, BICD2, HARS1, KIF1A, LRRK2, MSTO1, NEK1, NEFH, and SORL1, in 25 patients. NEK1 risk variants were present in 2.5% of this ALS cohort. Only four of the 25 patients reported relatives with other neurodegenerative or neuromuscular disorders. CONCLUSION: Gene variants known to cause other neurodegenerative or neuromuscular disorders, most frequently in NEK1, were identified in 9% of the patients with ALS. Most of these patients had no family history of other neurodegenerative or neuromuscular disorders. Our findings indicated that AFG3L2, ATP7A, BICD2, KIF1A, and MSTO1 should be further explored as potential ALS-causing genes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Ciclo Celular , Enfermedades Neurodegenerativas , Humanos , Predisposición Genética a la Enfermedad/genética , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Estudios de Asociación Genética , Familia , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Cinesinas/genética , Proteínas del Citoesqueleto/genética
2.
Neuroepidemiology ; 56(4): 271-282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35576897

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons. In Europe, disease-causing genetic variants have been identified in 40-70% of familial ALS patients and approximately 5% of sporadic ALS patients. In Norway, the contribution of genetic variants to ALS has not yet been studied. In light of the potential development of personalized medicine, knowledge of the genetic causes of ALS in a population is becoming increasingly important. The present study provides clinical and genetic data on familial and sporadic ALS patients in a Norwegian population-based cohort. METHODS: Blood samples and clinical information from ALS patients were obtained at all 17 neurological departments throughout Norway during a 2-year period. Genetic analysis of the samples involved expansion analysis of C9orf72 and exome sequencing targeting 30 known ALS-linked genes. The variants were classified using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 ALS patients were included in the study. Of these, 11.5% had one or several family members affected by ALS, whereas 88.5% had no known family history of ALS. A genetic cause of ALS was identified in 31 individuals (11.1%), among which 18 (58.1%) were familial and 13 (41.9%) were sporadic. The most common genetic cause was the C9orf72 expansion (6.8%), which was identified in 8 familial and 11 sporadic ALS patients. Pathogenic or likely pathogenic variants of SOD1 and TBK1 were identified in 10 familial and 2 sporadic cases. C9orf72 expansions dominated in patients from the Northern and Central regions, whereas SOD1 variants dominated in patients from the South-Eastern region. CONCLUSION: In the present study, we identified several pathogenic gene variants in both familial and sporadic ALS patients. Restricting genetic analysis to only familial cases would miss more than 40 percent of those with a disease-causing genetic variant, indicating the need for genetic analysis in sporadic cases as well.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Humanos , Epidemiología Molecular , Superóxido Dismutasa-1/genética
3.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100089

RESUMEN

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Discapacidad Intelectual/genética , Mutación/genética , Animales , Encéfalo/patología , Línea Celular , Exoma/genética , Femenino , Ácido Glutámico/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Fosforilación/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...