Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264287

RESUMEN

This article represents the first foray into investigating the consequences of various material combinations on the short-wave infrared (SWIR, 1000-2000 nm) performance of Tm-based core-shell nanocrystals (NCs) above 1600 nm. In total, six different material combinations involving two different types of SWIR-emitting core NCs (α-NaTmF4 and LiTmF4) combined with three different protecting shell materials (α-NaYF4, CaF2, and LiYF4) have been synthesized. All corresponding homo- and heterostructured NCs have been meticulously characterized by powder X-ray diffraction and electron microscopy techniques. The latter revealed that out of the six investigated combinations, only one led to the formation of a true core-shell structure with well-segregated core and shell domains. The direct correlation between the downshifting performance and the spatial localization of Tm3+ ions within the final homo- and heterostructured NCs is established. Interestingly, to achieve the best SWIR performance, the formation of an abrupt interface is not a prerequisite, while the existence of a pure (even thin) protective shell is vital. Remarkably, although all homo- and heterostructured NCs have been synthesized under the exact same experimental conditions, Tm3+ SWIR emission is either fully quenched or highly efficient depending on the type of material combination. The most efficient combination (LiTmF4/LiYF4) achieved a high photoluminescence quantum yield of 39% for SWIR emission above 1600 nm (excitation power density in the range 0.5-3 W/cm2) despite significant intermixing. From now on, highly efficient SWIR-emitting probes with an emission above 1600 nm are within reach to unlock the full potential of in vivo SWIR imaging.

2.
Nat Commun ; 15(1): 3798, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714689

RESUMEN

Transparent roofs and walls offer a compelling solution for harnessing natural light. However, traditional glass roofs and walls face challenges such as glare, privacy concerns, and overheating issues. In this study, we present a polymer-based micro-photonic multi-functional metamaterial. The metamaterial diffuses 73% of incident sunlight, creating a more comfortable and private indoor environment. The visible spectral transmittance of the metamaterial (95%) surpasses that of traditional glass (91%). Furthermore, the metamaterial is estimated to enhance photosynthesis efficiency by ~9% compared to glass roofs. With a high emissivity (~0.98) close to that of a mid-infrared black body, the metamaterial is estimated to have a cooling capacity of ~97 W/m2 at ambient temperature. The metamaterial was about 6 °C cooler than the ambient temperature in humid Karlsruhe. The metamaterial exhibits superhydrophobic performance with a contact angle of 152°, significantly higher than that of glass (26°), thus potentially having excellent self-cleaning properties.

3.
ACS Appl Mater Interfaces ; 15(37): 43985-43993, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37674324

RESUMEN

More complete recycling of plastic waste is possible only if new technologies that go beyond state-of-the-art near-infrared (NIR) sorting are developed. For example, tracer-based sorting is a new technology that explores the upconversion or down-shift luminescence of special tracers based on inorganic materials codoped with lanthanide ions. Specifically, down-shift tracers emit in the shortwave infrared (SWIR) spectral range and can be detected using a SWIR camera preinstalled in a state-of-the-art sorting machine for NIR sorting. In this study, we synthesized a very efficient SWIR tracer by codoping Li3Ba2Gd3 (MoO4)8 with Yb3+ and Er3+, where Yb3+ is a synthesizer ion (excited near 976 nm) and Er3+ emits near 1550 nm. Fine-tuning of the doping concentration resulted in a tracer (Li3Ba2Gd(3-x-y)(MoO4)8:xYb3+, yEr3+, where x = 0.2 and y = 0.4) with a high photoluminescence quantum yield for 1550 nm emission of 70% (using 976 nm excitation). This tracer was used to mark plastic objects. When the object was illuminated by a halogen lamp and a 976 nm laser, the three parts could be easily distinguished based on reflectance and luminescence spectra in the SWIR range: a plastic bottle made of polyethylene terephthalate, a bottle cap made of high-density polyethylene, and a label made of the tracer Li3Ba2Gd3(MoO4)8:Yb3+, Er3+. Importantly, the use of the tracer in sorting may require only the installation of a 976 nm laser in a state-of-the-art NIR sorting system.

4.
Nat Commun ; 14(1): 4462, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491427

RESUMEN

Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF4) or heterogeneous (CaF2) shell domains on optically-active α-NaYF4:Yb:Er (with and without Ce3+ co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm2; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.

5.
Phys Chem Chem Phys ; 25(17): 11986-11997, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37073924

RESUMEN

The search for new materials capable of efficient upconversion continues to attract attention. In this work, a comprehensive study of the upconversion luminescence in PbF2:Er3+,Yb3+ crystals with different concentrations of Yb3+ ions in the range of 2 to 7.5 mol% (Er3+ concentration was fixed at 2 mol%) was carried out. The highest value of upconversion quantum yield (ϕUC) 5.9% (at 350 W cm-2) was found in the PbF2 crystal doped with 2 mol% Er3+ and 3 mol% Yb3+. Since it is not always easy to directly measure ϕUC and estimate the related key figure of merit parameter, saturated photoluminescence quantum yield (ϕUCsat), a method to reliably predict ϕUCsat can be useful. Judd-Ofelt theory provides a convenient way to determine the radiative lifetimes of the excited states of rare-earth ions based on absorption measurements. When the luminescence decay times after direct excitation of a level are also measured, ϕUCsat for that level can be calculated. This approach is tested on a series of PbF2:Er3+,Yb3+ crystals. Good agreement between the estimates obtained as above and the directly experimentally measured ϕUCsat values is demonstrated. In addition, three methods of Judd-Ofelt calculations on powder samples were tested and the results were compared with Judd-Ofelt calculations on single crystals, which served as the source of the powder samples. Taken together, the results presented in our work for PbF2:Er3+,Yb3+ crystals contribute to a better understanding of the UC phenomena and provide a reference data set for the use of UC materials in practical applications.

6.
Front Chem ; 10: 1010857, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386002

RESUMEN

The effect of triplet-triplet annihilation (TTA) on the room-temperature phosphorescence (RTP) in metal-organic frameworks (MOFs) is studied in benchmark RTP MOFs based on Zn metal centers and isophthalic or terephthalic acid linkers (ZnIPA and ZnTPA). The ratio of RTP to singlet fluorescence is observed to decrease with increasing excitation power density. Explicitly, in ZnIPA the ratio of the RTP to fluorescence is 0.58 at 1.04 mW cm-2, but only 0.42 at (the still modest) 52.6 mW cm-2. The decrease in ratio is due to the reduction of RTP efficiency at higher excitation due to TTA. The density of triplet states increases at higher excitation power densities, allowing triplets to diffuse far enough during their long lifetime to meet another triplet and annihilate. On the other hand, the shorter-lived singlet species can never meet an annihilate. Therefore, the singlet fluorescence scales linearly with excitation power density whereas the RTP scales sub-linearly. Equivalently, the efficiency of fluorescence is unaffected by excitation power density but the efficiency of RTP is significantly reduced at higher excitation power density due to TTA. Interestingly, in time-resolved measurements, the fraction of fast decay increases but the lifetime of long tail of the RTP remains unaffected by excitation power density. This may be due to the confinement of triplets to individual grains, leading decay to be faster until there is only one triplet per grain left. Subsequently, the remaining "lone triplets" decay with the unchanging rate expressed by the long tail. These results increase the understanding of RTP in MOFs by explicitly showing the importance of TTA in determining the (excitation power density dependent) efficiency of RTP. Also, for applications in optical sensing, these results suggest that a method based on long tail lifetime of the RTP is preferable to a ratiometric approach as the former will not be affected by variation in excitation power density whereas the latter will be.

7.
Phys Chem Chem Phys ; 24(6): 3568-3578, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35084007

RESUMEN

Triplet-triplet annihilation upconversion (TTA-UC) is an important type of optical process with applications in biophotonics, solar energy harvesting and photochemistry. In most of the TTA-UC systems, the formation of triplet excited states takes place via spin-orbital interactions promoted by heavy atoms. Given the crucial role of heavy atoms (especially noble metals, such as Pd and Pt) in promoting intersystem crossing (ISC) and, therefore, in production of UC luminescence, the feasibility of using more readily available and inexpensive sensitizers without heavy atoms remains a challenge. Here, we investigated sensitization of TTA-UC using BODIPY-pyrene heavy-atom-free donor-acceptor dyads with different numbers of alkyl groups in the BODIPY scaffold. The molecules with four and six alkyl groups are unable to sensitize TTA-UC in the investigated solvents (tetrahydrofuran (THF) and dichloromethane (DCM)) due to negligible ISC. In contrast, the dyad with two methyl groups in the BODIPY scaffold and the dyad with unsubstituted BODIPY demonstrate efficient intersystem crossing (ISC) of 49-58%, resulting in TTA-UC with quantum yields of 4.7% and 6.9%, respectively. The analysis of the elementary steps of the TTA-UC process indicates that heavy-atom-free donor-acceptor dyads are less effective than their noble metal counterparts, but may equal them in the future if the right combination of solvent, donor-acceptor sensitizer structure, and new luminescent molecules as TTA-UC emitters can be found.

8.
ACS Appl Mater Interfaces ; 13(46): 54874-54883, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34723477

RESUMEN

Lanthanide-based upconversion (UC) allows harvesting sub-bandgap near-infrared photons in photovoltaics. In this work, we investigate UC in perovskite solar cells by implementing UC single crystal BaF2:Yb3+, Er3+ at the rear of the solar cell. Upon illumination with high-intensity sub-bandgap photons at 980 nm, the BaF2:Yb3+, Er3+ crystal emits upconverted photons in the spectral range between 520 and 700 nm. When tested under terrestrial sunlight representing one sun above the perovskite's bandgap and sub-bandgap illumination at 980 nm, upconverted photons contribute a 0.38 mA/cm2 enhancement in the short-circuit current density at lower intensity. The current enhancement scales non-linearly with the incident intensity of sub-bandgap illumination, and at higher intensity, 2.09 mA/cm2 enhancement in current was observed. Hence, our study shows that using a fluoride single crystal like BaF2:Yb3+, Er3+ for UC is a suitable method to extend the response of perovskite solar cells to near-infrared illumination at 980 nm with a subsequent enhancement in current for very high incident intensity.

9.
Small ; 17(47): e2104441, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34697908

RESUMEN

Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.

10.
Chem Rev ; 121(15): 9165-9195, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34327987

RESUMEN

Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1-2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient. Methods to increase the generation rate such as the use of cosensitizers to expand the absorption range and the use of plasmonics or photonic structures are reviewed. The opportunities and challenges for these approaches (or combinations thereof) to achieve efficient solar upconversion are discussed. The opportunity for enhancing the performance of technologies such as luminescent solar concentrators by combining upconversion together with micro-optics is also reviewed. Triplet-triplet annihilation-based upconversion is progressing steadily toward being relevant to lower-bandgap solar cells. Looking toward photocatalysis, photophysical modeling indicates that current blue-to-ultraviolet lanthanide upconversion systems are very inefficient. However, hope remains in this direction for organic upconversion enhancing the performance of visible-light-active photocatalysts.


Asunto(s)
Luminiscencia , Fotoquímica , Fotones , Energía Solar , Elementos de la Serie de los Lantanoides , Silicio
11.
Front Chem ; 8: 567, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766208

RESUMEN

Silicon nanocrystals (SiNCs) are regarded as a green and environmentally friendly material when compared with other semiconductor nanocrystals. Ultra-small SiNCs (with the size 4.6-5.2 nm) demonstrate strong UV absorption and photoluminescence in the near infrared (NIR) range with the high photoluminescence quantum yield (PLQY) up to 60%. In contrast to nanoporous silicon, ultra-small SiNCs do not possess an intrinsic ability to generate singlet oxygen (1O2). However, we demonstrate that SiNC-dye conjugates synthesized via microwave assistant hydrosilylation reaction produce 1O2 with moderate quantum yield (ΦΔ) up to 27% in cyclohexane. These interesting results were obtained via measurements of singlet oxygen phosphorescence at 1,270 nm. SiNCs play an important role in the production of singlet oxygen as SiNCs harvest UV and blue radiation and transfer absorbed energy to a triplet state of the attached dyes. It increases the population of the triplet states and leads to the enhancement of the singlet oxygen generation. Simultaneously, the SiNC-dye conjugates demonstrate NIR luminescence with the PLQY up to 22%. Thus, the luminescence behavior and photosensitizing properties of the SiNC-dye conjugates can attract interest as a new multifunctional platform in the field of bio-applications.

12.
J Phys Chem Lett ; 11(16): 6560-6566, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32702988

RESUMEN

The efficiency of photon upconversion via triplet-triplet annihilation is characterized by an upconversion quantum yield (ΦUC); however, uncertainties remain for its determination. Here, we present a new approach for the relative measurement of ΦUC for green-to-blue upconversion using BODIPY-pyrene donor-acceptor dyad (BD1) as a heavy-atom-free triplet sensitizer. This new approach exploits broad fluorescence from a charge-transfer (CT) state of BD1, which possesses (i) a significant Stokes shift of 181 nm in dichloromethane and (ii) a comparably high CT-fluorescence quantum yield (Φref = 7.0 ± 0.2%), which is independent from oxygen presence and emitter (perylene) concentration while also exhibiting a linear intensity dependence. On the basis of this, we developed an upconversion reference using the BD1 sensitizer mixed with perylene (1 × 10-5 M/1 × 10-4 M) in dichloromethane. With this reference system, we investigated the performance of three BODIPY donor-acceptor dyads in the upconversion process and achieved one of the highest ΦUC of 6.9 ± 0.2% observed for heavy-atom-free sensitizers to date.

13.
J Phys Chem Lett ; 11(7): 2477-2481, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32148036

RESUMEN

The upconversion of near-infrared (NIR) to visible (vis) photons is of interest for display technologies and energy conversion. Although triplet-triplet annihilation (TTA) offers a mechanism for upconversion that works efficiently at low incident irradiance flux densities, current strategies for NIR-vis upconversion based on TTA have fundamental limitations. Herein, we report a strategy for NIR-vis TTA based on lanthanide-containing complexes to sensitize the upconversion. We demonstrate a ß-diketonate complex of Yb3+ paired with rubrene that emits yellow (λem = 559 nm) under NIR excitation (λexc = 980 nm). This corresponds to an exceptional anti-Stokes shift of just less than 1 eV. Thus, lanthanide complexes could unlock high-performance NIR-vis upconversion, with lanthanide sensitizers overcoming the energy loss, reabsorption, and short triplet lifetime that fundamentally limit porphyrin, nanocrystals, and direct S0-T1 sensitizers.


Asunto(s)
Complejos de Coordinación/química , Naftacenos/química , Fármacos Fotosensibilizantes/química , Complejos de Coordinación/efectos de la radiación , Transferencia de Energía , Luz , Naftacenos/efectos de la radiación , Fármacos Fotosensibilizantes/efectos de la radiación , Iterbio/química , Iterbio/efectos de la radiación
14.
Dalton Trans ; 49(7): 2290-2299, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32016196

RESUMEN

Herein, we report a method to produce luminescent silicon nanocrystals (SiNc) that strongly absorb ultraviolet-visible light (300-550 nm) and emit in the near-infrared range (700-1000 nm) with a high photoluminescence quantum yield (PLQY). Using microwave-assisted hydrosilylation and employing reactive chromophores - such as ethenyl perylene, ethynyl perylene and ethylene-m-phenyl BODIPY - we are able to achieve a 10- and 3-fold enhancement of the absorption in the blue and green spectral range, respectively. The investigated dyes function both as passivating agents and highly efficient antenna, which absorb visible light and transfer the energy to SiNc with an efficiency of >95%. This enhanced absorption leads to a significant photoluminescence enhancement, up to ∼270% and ∼140% under excitation with blue and green light, respectively. Despite the gain in absolute brightness of the emission, we demonstrate that back energy transfer from the SiNc to the dyes leads to a decrease in the PLQY for dye-modified SiNc, as compared to unmodified SiNc. The synthesis of the SiNc-dye conjugates opens up new possibilities for applications of this abundant and non-toxic material in the field of solar energy harvesting, optical sensing and bioimaging via achieving strong NIR PL excited with visible light.

15.
ACS Appl Mater Interfaces ; 11(35): 31763-31776, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31392884

RESUMEN

A novel combination of a poly(vinylidene fluoride) (PVDF) membrane with pore size 0.2 µm and a photosensitizer 5,10,15,20-tetrakis (pentafluorophenyl)-21H,23H-porphine palladium(II) (PdTFPP) makes a promising hybrid material for the generation of singlet oxygen (1O2) and, thus, water treatment applications. The fabricated photocatalytic membrane exhibits permeability of 4280 ± 250 L·m-2·h-1·bar-1 and stable photocatalytic degradation performance over a 90 h period, when illuminated with green light (528 ± 20 nm) and operated in a dead-end, single-pass configuration. Methylene blue (MB) degradation of 83% was achieved for MB concentration of 1 mg·L-1 under the flow rate of 0.1 × 10-3 L·min-1 (flux of 30 L·m-2·h-1), light intensity of 21 mW·cm-2, and PdTFPP loading of 25 µmol·g-1. Due to an enhanced mass transfer, the reaction rate of MB removal (with apparent rate constant of kapp = 6.52 min-1) results in an efficient photodegradation of MB inside the PdTFPP-PVDF membrane. The influence of experimental parameters such as catalyst loading, flow rate, light intensity, and solute concentration on MB removal was investigated. This research enables the application of photocatalytic PdTFPP-PVDF membranes as a potential technology for water decontamination under visible-light illumination.

16.
J Phys Chem A ; 123(31): 6799-6811, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31287694

RESUMEN

In photon upconversion (UC) based on triplet-triplet annihilation, the upconversion photoluminescent quantum yield (UC-PLQY) depends on the excitation power density in a way that can be described by a single figure of merit. This figure of merit, the threshold value, allows the excitation power density required for efficient UC-PLQY to be compared between different triplet-triplet annihilation systems. Here, we investigate the excitation power density dependence of two-photon UC processes in a series of four lanthanide-doped inorganic host materials (oxides, fluorides, and chlorides) all doped with 18 mol % Yb3+ sensitizer ions and 2 mol % Er3+ activator ions. We demonstrate that an analogous figure of merit, which we call the critical power density (CPD), accurately describes the UC power dependence of these samples. Better CPD values are obtained when the lifetime of the intermediate states is long. The UC-PLQY at the CPD is linked to the saturation UC-PLQY. Thus, a measurement of the UC-PLQY at this low power density can be used to estimate the theoretical saturation UC-PLQY in the absence of deleterious effects such as laser-induced heating. This is compared to another method to estimate the saturation based on the CPD model, namely, taking half of the level's PLQY under direct excitation. Our careful analysis of the upconversion spectra as a function of excitation power density gives several insights into the differing upconversion pathways in the hosts and proves to be a useful tool for their comparison.

17.
ACS Appl Mater Interfaces ; 11(17): 15688-15697, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938507

RESUMEN

Efficient photon-harvesting materials require easy-to-deposit materials exhibiting good absorption and excited-state transport properties. We demonstrate an organic thin-film material system, a palladium-porphyrin-based surface-anchored metal-organic framework (SURMOF) thin film that meets these requirements. Systematic investigations using transient absorption spectroscopy confirm that triplets are very mobile within single crystalline domains; a detailed analysis reveals a triplet transfer rate on the order of 1010 s-1. The crystalline nature of the SURMOFs also allows a thorough theoretical analysis using the density functional theory. The theoretical results reveal that the intermolecular exciton transfer can be described by a Dexter electron exchange mechanism that is considerably enhanced by virtual charge-transfer exciton intermediates. On the basis of the photophysical results, we predict exciton diffusion lengths on the order of several micrometers in perfectly ordered, single-crystalline SURMOFs. In the presently available samples, strong interactions of excitons with domain boundaries present in these metal-organic thin films limit the diffusion length to the diameter of these two-dimensional grains, which amount to about 100 nm. Our results demonstrate high potential of SURMOFs for light-harvesting applications.

18.
Beilstein J Nanotechnol ; 10: 522-530, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873324

RESUMEN

We report the synthesis of high-performance organic-inorganic hybrid fluorescent nanocapsules comprising a polymer shell armored with an inorganic layer and a liquid core containing a fluorophore. The polymeric capsules are synthesized by free radical miniemulsion polymerization and contain covalently bound carboxylate surface functionalities that allow for the binding of metal ions through electrostatic interaction. A cerium(IV) oxide nanoparticle layer, formed in situ at the surface of the hybrid nanocapsules, acts as oxygen scavenger and keeps external reactive molecular oxygen from entering into the capsules, eventually resulting in a reduction of the photooxidation of encapsulated fluorescent molecules. This approach shows an increase in the fluorescence of the model organic fluorophore terrylene diimide by avoiding the ground-state molecular oxygen to react with electronically excited states of the fluorescent hydrocarbon molecule.

19.
Opt Lett ; 44(1): 29-32, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645537

RESUMEN

The refractive indices of photoresists used for direct laser writing (DLW) have been determined after exposure to ultraviolet (UV) light. However, it was anticipated that the refractive index will differ when applying a two-photon polymerization (TPP) process. In this Letter, we demonstrate that this is indeed the case. Making use of a guided mode coupling approach, we measure the dispersive real part of the refractive index (n) of a commercial photoresist (IP-Dip, Nanoscribe) at very high accuracy. Additionally, the imaginary part of the refractive index (k) is determined from absorption measurements for wavelengths in the range 300 to 1700 nm. TPP layers exhibit a significantly lower refractive index than their UV exposed bulk counterparts (Δn up to 0.01). Furthermore, when fabricating a TPP shell and UV exposing the interior, the refractive index of the shell will not change. This is an important consideration for optical component design and opens the possibility for low refractive index difference wave guiding.

20.
Sci Rep ; 8(1): 17483, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504924

RESUMEN

The concept of sequence-definition in the sense of polymer chemistry is introduced to conjugated, rod-like oligo(phenylene ethynylene)s via an iterative synthesis procedure. Specifically, monodisperse sequence-defined trimers and pentamers were prepared via iterative Sonogashira cross-coupling and deprotection. The reaction procedure was extended to tetra- and pentamers for the first time yielding a monodisperse pentamer with 18% and a sequence-defined pentamer with 3.2% overall yield. Furthermore, three novel trimers with a 9H-fluorene building block at predefined positions within the phenylene ethynylene chain were synthesised in 23-52% overall yields. Hence, it was confirmed that a functionality of interest can be incorporated selectively at a pre-defined position of these monodisperse oligomers. All respective intermediate structures were fully characterised by proton and carbon NMR, mass spectrometry, size-exclusion chromatography, and IR spectroscopy. Additionally, thermal and optical transitions are reported for the different oligomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA