Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848574

RESUMEN

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Regiones Antárticas , Efectos Antropogénicos , Océano Índico
2.
J Exp Biol ; 224(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653718

RESUMEN

Although hydrogen isotopes (δ2H) are commonly used as tracers of animal movement, minimal research has investigated the use of δ2H as a proxy to quantify resource and habitat use. While carbon and nitrogen are ultimately derived from a single source (food), the proportion of hydrogen in consumer tissues originates from two distinct sources: body water and food. Before hydrogen isotopes can be effectively used as a resource and habitat tracer, we need estimates of (net) discrimination factors (Δ2HNet) that account for the physiologically mediated differences in the δ2H values of animal tissues relative to that of the food and water sources they use to synthesize tissues. Here, we estimated Δ2HNet in captive green turtles (Chelonia mydas) by measuring the δ2H values of tissues (epidermis and blood components) and dietary macromolecules collected in two controlled feeding experiments. Tissue δ2H and Δ2HNet values varied systematically among tissues, with epidermis having higher δ2H and Δ2HNet values than blood components, which mirrors patterns between keratinaceous tissues (feathers, hair) and blood in birds and mammals. Serum/plasma of adult female green turtles had significantly lower δ2H values compared with juveniles, likely due to increased lipid mobilization associated with reproduction. This is the first study to quantify Δ2HNet values in a marine ectotherm, and we anticipate that our results will further refine the use of δ2H analysis to better understand animal resource and habitat use in marine ecosystems, especially coastal areas fueled by a combination of marine (e.g. micro/macroalgae and seagrass) and terrestrial (e.g. mangroves) primary production.


Asunto(s)
Tortugas , Animales , Isótopos de Carbono/análisis , Ecosistema , Femenino , Hidrógeno , Isótopos de Nitrógeno/análisis
3.
Mar Environ Res ; 163: 105201, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33162117

RESUMEN

Migratory marine megafauna generally move vast distances between productive foraging grounds and environmentally stable breeding grounds, but characterizing how they use these habitats to maintain homeostasis and reproduce is difficult. We used isotope analysis of blue whale skin strata (n = 621) and potential prey (n = 300) to examine their migratory and foraging strategies in the eastern Pacific Ocean. Our results suggest that most whales in the northeast Pacific use a mixed income and capital breeding strategy, and use the California Current Ecosystem as their primary summer-fall foraging ground. A subset of individuals exhibited migratory plasticity and spend most of the year in the Gulf of California or Costa Rica Dome, two regions believed to be their primary winter-spring breeding grounds. Isotope data also revealed that whales in the southern Eastern Tropical Pacific generally do not forage in the northeast Pacific, which suggests a north-south population structure with a boundary near the equator.


Asunto(s)
Balaenoptera , Migración Animal , Animales , Ecosistema , Isótopos , Océano Pacífico , Estaciones del Año
4.
PLoS One ; 12(5): e0177880, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28562625

RESUMEN

Stable isotope analysis in mysticete skin and baleen plates has been repeatedly used to assess diet and movement patterns. Accurate interpretation of isotope data depends on understanding isotopic incorporation rates for metabolically active tissues and growth rates for metabolically inert tissues. The aim of this research was to estimate isotopic incorporation rates in blue whale skin and baleen growth rates by using natural gradients in baseline isotope values between oceanic regions. Nitrogen (δ15N) and carbon (δ13C) isotope values of blue whale skin and potential prey were analyzed from three foraging zones (Gulf of California, California Current System, and Costa Rica Dome) in the northeast Pacific from 1996-2015. We also measured δ15N and δ13C values along the lengths of baleen plates collected from six blue whales stranded in the 1980s and 2000s. Skin was separated into three strata: basale, externum, and sloughed skin. A mean (±SD) skin isotopic incorporation rate of 163±91 days was estimated by fitting a generalized additive model of the seasonal trend in δ15N values of skin strata collected in the Gulf of California and the California Current System. A mean (±SD) baleen growth rate of 15.5±2.2 cm y-1 was estimated by using seasonal oscillations in δ15N values from three whales. These oscillations also showed that individual whales have a high fidelity to distinct foraging zones in the northeast Pacific across years. The absence of oscillations in δ15N values of baleen sub-samples from three male whales suggests these individuals remained within a specific zone for several years prior to death. δ13C values of both whale tissues (skin and baleen) and potential prey were not distinct among foraging zones. Our results highlight the importance of considering tissue isotopic incorporation and growth rates when studying migratory mysticetes and provide new insights into the individual movement strategies of blue whales.


Asunto(s)
Balaenoptera/metabolismo , Isótopos de Carbono/metabolismo , Dieta , Movimiento , Isótopos de Nitrógeno/metabolismo , Piel/metabolismo , Animales , Balaenoptera/crecimiento & desarrollo , Balaenoptera/fisiología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...