Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Acta Biomater ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38702010

RESUMEN

Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO2-nanoparticles, dual-loaded with glucose-oxidase and Fe3O4-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N3) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO2-nanoparticles were in situ click-reacted with d-Ala-N3 in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates H2O2 at endogenously-available glucose concentrations, while subsequently Fe3O4-nanoparticles catalyze generation of •OH from the H2O2 generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO2-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO2-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N3, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and Fe3O4 nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.

2.
Biomaterials ; 308: 122576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640785

RESUMEN

Biomaterial-associated infection (BAI) is considered a unique infection due to the presence of a biomaterial yielding frustrated immune-cells, ineffective in clearing local micro-organisms. The involvement of surface-adherent/surface-adapted micro-organisms in BAI, logically points to biomaterial surface-modifications for BAI-control. Biomaterial surface-modification is most suitable for prevention before adhering bacteria have grown into a mature biofilm, while BAI-treatment is virtually impossible through surface-modification. Hundreds of different surface-modifications have been proposed for BAI-control but few have passed clinical trials due to the statistical near-impossibility of benefit-demonstration. Yet, no biomaterial surface-modification forwarded, is clinically embraced. Collectively, this leads us to conclude that surface-modification is a dead-end road. Accepting that BAI is, like most human infections, due to surface-adherent biofilms (though not always to a foreign material), and regarding BAI as a common infection, opens a more-generally-applicable and therewith easier-to-validate road. Pre-clinical models have shown that stimuli-responsive nano-antimicrobials and antibiotic-loaded nanocarriers exhibit prolonged blood-circulation times and can respond to a biofilm's micro-environment to penetrate and accumulate within biofilms, prompt ROS-generation and synergistic killing with antibiotics of antibiotic-resistant pathogens without inducing further antimicrobial-resistance. Moreover, they can boost frustrated immune-cells around a biomaterial reducing the importance of this unique BAI-feature. Time to start exploring the nano-road for BAI-control.


Asunto(s)
Materiales Biocompatibles , Biopelículas , Nanotecnología , Propiedades de Superficie , Humanos , Materiales Biocompatibles/química , Biopelículas/efectos de los fármacos , Nanotecnología/métodos , Animales , Infecciones Relacionadas con Prótesis/prevención & control , Prótesis e Implantes , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Biofilm ; 7: 100188, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38495770

RESUMEN

Dispersal of infectious biofilms increases bacterial concentrations in blood. To prevent sepsis, the strength of a dispersant should be limited to allow the immune system to remove dispersed bacteria from blood, preferably without antibiotic administration. Biofilm bacteria are held together by extracellular polymeric substances that can be degraded by dispersants. Currently, comparison of the strength of dispersants is not possible by lack of a suitable comparison parameter. Here, a biofilm dispersal parameter is proposed that accounts for differences in initial biofilm properties, dispersant concentration and exposure time by using PBS as a control and normalizing outcomes with respect to concentration and time. The parameter yielded near-identical values based on dispersant-induced reductions in biomass or biofilm colony-forming-units and appeared strain-dependent across pathogens. The parameter as proposed is largely independent of experimental methods and conditions and suitable for comparing different dispersants with respect to different causative strains in particular types of infection.

4.
J Colloid Interface Sci ; 664: 275-283, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38471190

RESUMEN

Planktonic bacterial presence in many industrial and environmental applications and personal health-care products is generally countered using antimicrobials. However, antimicrobial chemicals present an environmental threat, while emerging resistance reduces their efficacy. Suspended bacteria have no defense against mechanical attack. Therefore, we synthesized silica hexapods on an α-Fe2O3 core that can be magnetically-rotated to inflict lethal cell-wall-damage to planktonic Gram-negative and Gram-positive bacteria. Hexapods possessed 600 nm long nano-spikes, composed of SiO2, as shown by FTIR and XPS. Fluorescence staining revealed cell wall damage caused by rotating hexapods. This damage was accompanied by DNA/protein release and bacterial death that increased with increasing rotational frequency up to 500 rpm. Lethal puncturing was more extensive on Gram-negative bacteria than on Gram-positive bacteria, which have a thicker peptidoglycan layer with a higher Young's modulus. Simulations confirmed that cell-wall-puncturing occurs at lower nano-spike penetration levels in the cell walls of Gram-negative bacteria. This approach offers a new way to kill bacteria in suspension, not based on antimicrobial chemicals.


Asunto(s)
Antiinfecciosos , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/metabolismo , Dióxido de Silicio/farmacología , Dióxido de Silicio/metabolismo , Bacterias Grampositivas/metabolismo , Plancton , Bacterias , Pared Celular
5.
Adv Healthc Mater ; 13(3): e2301747, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37908125

RESUMEN

Antimicrobial-resistant bacterial infections threaten to become the number one cause of death by the year 2050. Since the speed at which antimicrobial-resistance develops is exceeding the pace at which new antimicrobials come to the market, this threat cannot be countered by making more, new and stronger antimicrobials. Promising new antimicrobials should not only kill antimicrobial-resistant bacteria, but also prevent development of new bacterial resistance mechanisms in strains still susceptible. Here, PAMAM-dendrimers are clustered using glutaraldehyde to form megamers that are core-loaded with ciprofloxacin and functionalized with HA-SNO. Megamers are enzymatically disintegrated in an acidic pH, as in infectious biofilms, yielding release of ciprofloxacin and NO-generation by HA-SNO. NO-generation does not contribute to the killing of planktonic Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but in a biofilm-mode of growth short-lived NO-assisted killing of both ciprofloxacin-susceptible and ciprofloxacin-resistant bacterial strains by the ciprofloxacin released. Repeated sub-culturing of ciprofloxacin-susceptible bacteria in presence of ciprofloxacin-loaded and HA-SNO functionalized PAMAM-megamers does not result in ciprofloxacin-resistant variants as does repeated culturing in presence of ciprofloxacin. Healing of wounds infected by a ciprofloxacin-resistant S. aureus variant treated with ciprofloxacin-loaded, HA-SNO functionalized megamers proceed faster through NO-assisted ciprofloxacin killing of infecting bacteria and stimulation of angiogenesis.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratones , Animales , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Ácido Hialurónico/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Farmacorresistencia Microbiana , Antiinfecciosos/farmacología , Biopelículas , Concentración de Iones de Hidrógeno , Pseudomonas aeruginosa
6.
Biomaterials ; 302: 122320, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738742

RESUMEN

Treatment of acute bacterial meningitis is difficult due to the impermeability of the blood-brain barrier, greatly limiting the antibiotic concentrations that can be achieved in the brain. Escherichia coli grown in presence of iron-oxide magnetic nanoparticles secrete large amounts of magnetic outer-membrane vesicles (OMVs) in order to remove excess Fe from their cytoplasm. OMVs are fully biomimetic nanocarriers, but can be inflammatory. Here, non-inflammatory magnetic OMVs were prepared from an E. coli strain in which the synthesis of inflammatory lipid A acyltransferase was inhibited using CRISPR/Cas9 mediated gene knockout. OMVs were loaded with ceftriaxone (CRO) and meso-tetra-(4-carboxyphenyl)porphine (TCPP) and magnetically driven across the blood-brain barrier for sonodynamic treatment of bacterial meningitis. ROS-generation upon ultrasound application of CRO- and TCPP-loaded OMVs yielded similar ROS-generation as by TCPP in solution. In vitro, ROS-generation by CRO- and TCPP-loaded OMVs upon ultrasound application operated synergistically with CRO to kill a hard-to-kill, CRO-tolerant E. coli strain. In a mouse model of CRO-tolerant E. coli meningitis, CRO- and TCPP-loaded OMVs improved survival rates and clinical behavioral scores of infected mice after magnetic targeting and ultrasound application. Recurrence did not occur for at least two weeks after arresting treatment.


Asunto(s)
Antibacterianos , Meningitis Bacterianas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Especies Reactivas de Oxígeno , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Meningitis Bacterianas/tratamiento farmacológico , Proteínas de la Membrana Bacteriana Externa
7.
Nano Lett ; 23(17): 8326-8330, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37611221

RESUMEN

Bacterially induced sepsis requires rapid bacterial detection and identification. Hours count for critically ill septic patients, while current culture-based detection requires at least 10 h up to several days. Here, we apply a microfluidic device equipped with a bacterially activated, macrophage-membrane-coating on nanowired-Si adsorbent surfaces for rapid, bacterial detection and Gram-identification in bacterially contaminated blood. Perfusion of suspensions of Gram-negative or Gram-positive bacteria through a microfluidic device equipped with membrane-coated adsorbent surfaces detected low (<10 CFU/mL) bacterial levels. Subsequent, in situ fluorescence-staining yielded Gram-identification for guiding antibiotic selection. In mixed Escherichia coli and Staphylococcus aureus suspensions, Gram-negative and Gram-positive bacteria were detected in the same ratios as those fixed in suspension. Results were validated with a 100% correct score by blinded evaluation (two observers) of 15 human blood samples, spiked with widely different bacterial strains or combinations of strains, demonstrating the potential of the platform for rapid (1.5 h in total) diagnosis of bacterial sepsis.


Asunto(s)
Bacterias , Sepsis , Humanos , Suspensiones , Dispositivos Laboratorio en un Chip , Escherichia coli , Macrófagos , Sepsis/diagnóstico
8.
ACS Nano ; 17(3): 2328-2340, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36692081

RESUMEN

Eradication of infectious biofilms is becoming increasingly difficult due to the growing number of antibiotic-resistant strains. This necessitates development of nonantibiotic-based, antimicrobial approaches. To this end, we designed a heterocatalytic metal-organic framework composed of zirconium 1,4-dicarboxybenzene (UiO-66) with immobilized Pt nanoparticles (Pt-NP/UiO-66). Pt-NP/UiO-66 enhanced singlet-oxygen generation compared with Pt nanoparticles or UiO-66, particularly in an acidic environment. Singlet-oxygen generation degraded phosphodiester bonds present in eDNA gluing biofilms together and therewith dispersed biofilms. Remaining biofilms possessed a more open structure. Concurrently, Pt-NP/UiO-66 stimulated macrophages to adapt a more M1-like, "fighting" phenotype, moving faster toward their target bacteria and showing increased bacterial killing. As a combined effect of biofilm dispersal and macrophage polarization, a subcutaneous Staphylococcus aureus biofilm in mice was more readily eradicated by Pt-NP/UiO-66 than by Pt nanoparticles or UiO-66. Therewith, heterocatalytic Pt-NP/UiO-66 metal-organic frameworks constitute a nonantibiotic-based strategy to weaken protective matrices and disperse infectious biofilms, while strengthening macrophages in bacterial killing.


Asunto(s)
Enfermedades Transmisibles , Estructuras Metalorgánicas , Ratones , Animales , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Biopelículas , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Oxígeno/farmacología
9.
J Control Release ; 352: 460-471, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341930

RESUMEN

Exposure of infectious biofilms to dispersants induces high bacterial concentrations in blood that may cause sepsis. Preventing sepsis requires simultaneous biofilm dispersal and bacterial killing. Here, self-targeting DCPA(2-(4-((1,5-bis(octadecenoyl)1,5-dioxopentan-2-yl)carbamoyl)pyridin-1-ium-1-yl)acetate) liposomes with complexed water were self-assembled with ciprofloxacin loaded in-membrane and PEGylated as a lipid-membrane component, together with bromelain loaded in-core. Inside biofilms, DCPA-H2O and PEGylated ciprofloxacin became protonated, disturbing the balance in the lipid-membrane to cause liposome-burst and simultaneous release of bromelain and ciprofloxacin. Simultaneous release of bromelain and ciprofloxacin enhanced bacterial killing in Staphylococcus aureus biofilms as compared with free bromelain and/or ciprofloxacin. After tail-vein injection in mice, liposomes accumulated inside intra-abdominal staphylococcal biofilms. Subsequent liposome-burst and simultaneous release of bromelain and ciprofloxacin yielded degradation of the biofilm matrix by bromelain and higher bacterial killing without inducing septic symptoms as obtained by injection of free bromelain and ciprofloxacin. This shows the advantage of simultaneous release from liposomes of bromelain and ciprofloxacin inside a biofilm.


Asunto(s)
Bromelaínas , Sepsis , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Ciprofloxacina/farmacología , Lípidos , Liposomas , Pruebas de Sensibilidad Microbiana , Polietilenglicoles , Protones , Sepsis/tratamiento farmacológico
10.
Acta Biomater ; 154: 559-571, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36243368

RESUMEN

Antibiotic-loaded PEG/PAE-based micelles are frequently considered for eradicating infectious biofilms. At physiological pH, PEG facilitates transport through blood. Near an acidic infection-site, PAE becomes protonated causing micellar targeting to a biofilm. However, micellar penetration and accumulation is confined to the surface region of a biofilm. Especially matured biofilms also possess hypoxic regions. We here designed dual-responsive PEG/PAE-b-P(Lys-NBCF) micelles, responding to both acidity and low oxygen-saturation level in matured biofilms. Dual, pH- and hypoxia-responsive micelles targeted and accumulated evenly over the depth of 7- to 14-days old biofilms. Delineation demonstrated that pH-responsiveness was responsible for targeting of the infection-site and accumulation of micelles in the surface region of the biofilm. Hypoxia-responsiveness caused deep penetration in the biofilm. Dual, pH- and hypoxia-responsive micelles loaded with ciprofloxacin yielded more effective, synergistic eradication of 10-days old, matured Staphylococcus aureus biofilms underneath an abdominal imaging-window in living mice than achieved by ciprofloxacin in solution or single, pH- or hypoxia responsive micelles loaded with ciprofloxacin. Also, wound-healing after removal of window and its frame proceeded fastest after tail-vein injection of ciprofloxacin-loaded, dual, pH- and hypoxia-responsive micelles. Concluding, pH- and hypoxia-responsiveness are both required for eradicating mature biofilms and advancing responsive antibiotic nanocarriers to clinical application. STATEMENT OF SIGNIFICANCE: pH-responsive antibiotic nanocarriers have emerged as a possible new strategy to prevent antimicrobial-resistant bacterial infections from becoming the leading cause of death. In this paper, we show that commonly studied, pH-responsive micellar nanocarriers merely allow self-targeting to an infectious biofilm, but do not penetrate deeply into the biofilm. The dual-responsive (acidic pH- and hypoxia) antibiotic-loaded micelles designed here not only self-target to an infectious biofilm, but also penetrate deeply. The in vitro and in vivo advantages of dual-responsive nanocarriers are most obvious when studied in infectious biofilms grown for 10 viz a viz the 2 days, usually applied in the literature. Significantly, clinical treatment of bacterial infection usually starts more than 2 days after appearance of the first symptoms.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Micelas , Biopelículas , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Hipoxia
11.
Small ; 18(48): e2204350, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36269872

RESUMEN

Extracellular outer-membrane vesicles (OMVs) are attractive for use as drug nanocarriers, because of their high biocompatibility and ability to enter cells. However, widespread use is hampered by low yields. Here, a high-yield method for magnetic harvesting of OMVs from Escherichia coli is described. To this end, E. coli are grown in the presence of magnetic iron-oxide nanoparticles (MNPs). Uptake of MNPs by E. coli is low and does not increase secretion of OMVs. Uptake of MNPs can be enhanced through PEGylation of MNPs. E. coli growth in the presence of PEGylated MNPs increases bacterial MNP-uptake and OMV-secretion, accompanied by upregulation of genes involved in OMV-secretion. OMVs containing MNPs can be magnetically harvested at 60-fold higher yields than achieved by ultracentrifugation. Functionally, magnetically-harvested OMVs and OMVs harvested by ultracentrifugation are both taken-up in similar numbers by bacteria. Uniquely, in an applied magnetic field, magnetically-harvested OMVs with MNPs accumulate over the entire depth of an infectious biofilm. OMVs harvested by ultracentrifugation without MNPs only accumulate near the biofilm surface. In conclusion, PEGylation of MNPs is essential for their uptake in E. coli and yields magnetic OMVs allowing high-yield magnetic-harvesting. Moreover, magnetic OMVs can be magnetically targeted to a cargo delivery site in the human body.


Asunto(s)
Escherichia coli , Vesículas Extracelulares , Humanos , Biopelículas , Fenómenos Magnéticos
12.
Front Microbiol ; 13: 861890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694293

RESUMEN

Antimicrobials with nonselective antibacterial efficacy such as chlorhexidine can be effective in reducing biofilm, but bear the risk of inducing resistance in specific bacteria. In clinical practice, bacteria such as Staphylococcus aureus have been found resistant to chlorhexidine, but other bacteria, including Streptococcus mutans, have largely remained susceptible to chlorhexidine despite its widespread use in oral healthcare. Here, we aim to forward a possible reason as to why S. aureus can acquire resistance against chlorhexidine, while S. mutans remains susceptible to chlorhexidine. Measurement of surface-enhanced fluorescence indicated that chlorhexidine caused gradual, but irreversible deformation to adhering green fluorescent S. aureus due to irreparable damage to the cell wall. Concurrently, the metabolic activity of adhering staphylococci was higher than of planktonic bacteria, suggesting efflux mechanisms may have been activated upon cell wall deformation, impeding the buildup of a high chlorhexidine concentration in the cytoplasm and therewith stimulating the development of chlorhexidine resistance in S. aureus. Exposure of S. mutans to chlorhexidine caused immediate, but reversible deformation in adhering streptococci, indicative of rapid self-repair of cell wall damage done by chlorhexidine. Due to cell wall self-repair, S. mutans will be unable to effectively reduce the chlorhexidine concentration in the cytoplasm causing solidification of the cytoplasm. In line, no increased metabolic activity was observed in S. mutans during exposure to chlorhexidine. Therewith, self-repair is suicidal and prevents the development of a chlorhexidine-resistant progeny in S. mutans.

13.
Chem Commun (Camb) ; 58(50): 7030-7033, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35647712

RESUMEN

We report a self-cleaning, bacterial killing surface by immobilization of AgCl microparticles on a surface, acting as chemical micropumps. The surface shows a high bacterial killing efficacy of attached bacteria and exhibits sustainable removal of bacteria as a result of UV-activatable micropumping originating from the photocatalytic reaction of AgCl microparticles. Our work provides an advance in the sustainable use of bacterial contact-killing surfaces stricto sensu through removal of dead bacteria and debris that may shield contact-killing sites.


Asunto(s)
Bacterias , Propiedades de Superficie
14.
Mater Today Bio ; 15: 100293, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35634173

RESUMEN

Probiotic bacteria employed for food supplementation or probiotic-assisted antibiotic treatment suffer from passage through the acidic gastro-intestinal tract and unintended killing by antibiotics. Carbon-quantum-dots (CQDs) derived from bacteria can inherit different chemical groups and associated functionalities from their source bacteria. In order to yield simultaneous, passive protection and enhanced, active functionality, we attached CQDs pyrolytically carbonized at 220 â€‹°C from Lactobacillus acidophilus or Escherichia coli to a probiotic strain (Bifidobacterium infantis) using boron hydroxyl-modified, mesoporous silica nanoparticles as an intermediate encapsulating layer. Fourier-transform-infrared-spectroscopy, X-ray-photoelectron-spectroscopy and scanning-electron-microscopy were employed to demonstrate successful encapsulation of B. infantis by silica nanoparticles and subsequent attachment of bacterially-derived CQDs. Thus encapsulated B. infantis possessed a negative surface charge and survived exposure to simulated gastric fluid and antibiotics better than unencapsulated B. infantis. During B. infantis assisted antibiotic treatment of intestinal epithelial layers colonized by E. coli, encapsulated B. infantis adhered and survived in higher numbers on epithelial layers than B. infantis without encapsulation or encapsulated with only silica nanoparticles. Moreover, higher E. coli killing due to increased reactive-oxygen-species generation was observed. In conclusion, the active, protective encapsulation described enhanced the probiotic functionality of B. infantis, which might be considered as a first step towards a fully engineered, probiotic nanoparticle.

15.
Bioact Mater ; 14: 321-334, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35386819

RESUMEN

Cascade-reaction chemistry can generate reactive-oxygen-species that can be used for the eradication of infectious biofilms. However, suitable and sufficient oxygen sources are not always available near an infection site, while the reactive-oxygen-species generated are short-lived. Therefore, we developed a magnetic cascade-reaction container composed of mesoporous Fe3O4@SiO2 nanoparticles containing glucose-oxidase and l-arginine for generation of reactive-oxygen-species. Glucose-oxidase was conjugated with APTES facilitating coupling to Fe3O4@SiO2 nanoparticles and generation of H2O2 from glucose. l-arginine was loaded into the nanoparticles to generate NO from the H2O2 generated. Using an externally-applied magnetic field, cascade-reaction containers could be homogeneously distributed across the depth of an infectious biofilm. Cascade-reaction containers with coupled glucose-oxidase were effective in killing planktonic, Gram-positive and Gram-negative bacteria. Additional efficacy of the l-arginine based second cascade-reaction was only observed when H2O2 as well as NO were generated in-biofilm. In vivo accumulation of cascade-reaction containers inside abdominal Staphylococcus aureus biofilms upon magnetic targeting was observed real-time in living mice through an implanted, intra-vital window. Moreover, vancomycin-resistant, abdominal S. aureus biofilms could be eradicated consuming solely endogenous glucose, without any glucose addition. Herewith, a new, non-antibiotic-based infection-control strategy has been provided, constituting a welcome addendum to the shrinking clinical armamentarium to control antibiotic-resistant bacterial infections.

16.
J Mater Chem B ; 10(14): 2316-2322, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35129564

RESUMEN

Self-targeting antimicrobial platforms have yielded new possibilities for the treatment of infectious biofilms. Self-targeting involves stealth transport through the blood circulation towards an infectious biofilm, where the antimicrobial platform penetrates and accumulates in a biofilm in response to a change in environmental conditions, such as local pH. In a final step, nano-antimicrobials need to be activated or the antimicrobial cargo of nanocarriers released. Zwitterions possess both cationic and anionic groups, allowing full reversal in zeta potential from below to above zero in response to a change in environmental conditions. Electrolyte-based platforms generally do not have the ability to change their zeta potentials from below to above zero. Zwitterions for use in self-targeting platforms are usually hydrophilic and have a negative charge under physiological conditions (pH 7.4) providing low adsorption of proteins and assisting blood circulation. However, near or in the acidic environment of a biofilm, they become positively-charged yielding targeting, penetration and accumulation in the biofilm through electrostatic double-layer attraction to negatively-charged bacteria. Response-times to pH changes vary, depending on the way the zwitterion or electrolyte is built in a platform. Self-targeting zwitterion-based platforms with a short response-time in vitro yield different accumulation kinetics in abdominal biofilms in living mice than platforms with a longer response-time. In vivo experiments in mice also proved that self-targeting, pH-responsive zwitterion-based platforms provide a feasible approach for clinical control of bacterial infections. Clinically however, also other conditions than infection may yield an acidic environment. Therefore, it remains to be seen whether pH is a sufficiently unique recognition sign to direct self-targeting platforms to an infectious biofilm or whether (additional) external targeting through e.g. near-infrared irradiation or magnetic field application is needed.


Asunto(s)
Antiinfecciosos , Biopelículas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Rayos Infrarrojos , Ratones
17.
Adv Sci (Weinh) ; 9(7): e2103485, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064773

RESUMEN

Diabetic foot ulcers infected with antibiotic-resistant bacteria form a severe complication of diabetes. Antimicrobial-loaded hydrogels are used as a dressing for infected wounds, but the ongoing rise in the number of antimicrobial-resistant infections necessitates new, nonantibiotic based designs. Here, a guanosine-quadruplex (G4 )-hydrogel composed of guanosine, 2-formylphenylboronic acid, and putrescine is designed and used as a cascade-reaction container. The G4 -hydrogel is loaded with glucose-oxidase and hemin. The first cascade-reaction, initiated by glucose-oxidase, transforms glucose and O2  into gluconic acid and H2 O2 . In vitro, this reaction is most influential on killing Staphylococcus aureus or Pseudomonas aeruginosa in suspension, but showed limited killing of bacteria in biofilm-modes of growth. The second cascade-reaction, however, transforming H2 O2  into reactive-oxygen-species (ROS), also enhances killing of biofilm bacteria due to hemin penetration into biofilms and interaction with eDNA G-quadruplexes in the biofilm matrix. Therewith, the second cascade-reaction generates ROS close to the target bacteria, facilitating killing despite the short life-time of ROS. Healing of infected wounds in diabetic mice proceeds faster upon coverage by these G4 -hydrogels than by clinically common ciprofloxacin irrigation. Moreover, local glucose concentrations around infected wounds decrease. Concluding, a G4 -hydrogel loaded with glucose-oxidase and hemin is a good candidate for infected wound dressings, particularly in diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Infección de Heridas , Animales , Glucosa , Guanosina/farmacología , Humanos , Hidrogeles , Ratones , Infección de Heridas/tratamiento farmacológico
18.
Crit Rev Microbiol ; 48(3): 283-302, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34411498

RESUMEN

Bacterial biofilms occur in many natural and industrial environments. Besides bacteria, biofilms comprise over 70 wt% water. Water in biofilms occurs as bound- or free-water. Bound-water is adsorbed to bacterial surfaces or biofilm (matrix) structures and possesses different Infra-red and Nuclear-Magnetic-Resonance signatures than free-water. Bound-water is different from intra-cellularly confined-water or water confined within biofilm structures and bacteria are actively involved in building water-filled structures by bacterial swimmers, dispersion or lytic self-sacrifice. Water-filled structures can be transient due to blocking, resulting from bacterial growth, compression or additional matrix formation and are generally referred to as "channels and pores." Channels and pores can be distinguished based on mechanism of formation, function and dimension. Channels allow transport of nutrients, waste-products, signalling molecules and antibiotics through a biofilm provided the cargo does not adsorb to channel walls and channels have a large length/width ratio. Pores serve a storage function for nutrients and dilute waste-products or antimicrobials and thus should have a length/width ratio close to unity. The understanding provided here on the role of water in biofilms, can be employed to artificially engineer by-pass channels or additional pores in industrial and environmental biofilms to increase production yields or enhance antimicrobial penetration in infectious biofilms.


Asunto(s)
Antiinfecciosos , Agua , Antibacterianos , Bacterias/genética , Biopelículas
19.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34947529

RESUMEN

Photothermal nanoparticles can be used for non-antibiotic-based eradication of infectious biofilms, but this may cause collateral damage to tissue surrounding an infection site. In order to prevent collateral tissue damage, we encapsulated photothermal polydopamine-nanoparticles (PDA-NPs) in mixed shell polymeric micelles, composed of stealth polyethylene glycol (PEG) and pH-sensitive poly(ß-amino ester) (PAE). To achieve encapsulation, PDA-NPs were made hydrophobic by electrostatic binding of indocyanine green (ICG). Coupling of ICG enhanced the photothermal conversion efficacy of PDA-NPs from 33% to 47%. Photothermal conversion was not affected by micellar encapsulation. No cytotoxicity or hemolytic effects of PEG-PAE encapsulated PDA-ICG-NPs were observed. PEG-PAE encapsulated PDA-ICG-NPs showed good penetration and accumulation in a Staphylococcus aureus biofilm. Penetration and accumulation were absent when nanoparticles were encapsulated in PEG-micelles without a pH-responsive moiety. PDA-ICG-NPs encapsulated in PEG-PAE-micelles found their way through the blood circulation to a sub-cutaneous infection site after tail-vein injection in mice, yielding faster eradication of infections upon near-infrared (NIR) irradiation than could be achieved after encapsulation in PEG-micelles. Moreover, staphylococcal counts in surrounding tissue were reduced facilitating faster wound healing. Thus, the combined effect of targeting and localized NIR irradiation prevented collateral tissue damage while eradicating an infectious biofilm.

20.
Mater Sci Eng C Mater Biol Appl ; 131: 112526, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34857305

RESUMEN

Biomaterial-associated infections can occur any time after surgical implantation of biomaterial implants and limit their success rates. On-demand, antimicrobial release coatings have been designed, but in vivo release triggers uniquely relating with infection do not exist, while inadvertent leakage of antimicrobials can cause exhaustion of a coating prior to need. Here, we attach magnetic-nanoparticles to a biomaterial surface, that can be pulled-off in a magnetic field through an adhering, infectious biofilm. Magnetic-nanoparticles remained stably attached to a surface upon exposure to PBS for at least 50 days, did not promote bacterial adhesion or negatively affect interaction with adhering tissue cells. Nanoparticles could be magnetically pulled-off from a surface through an adhering biofilm, creating artificial water channels in the biofilm. At a magnetic-nanoparticle coating concentration of 0.64 mg cm-2, these by-pass channels increased the penetrability of Staphylococcus aureus and Pseudomonas aeruginosa biofilms towards different antibiotics, yielding 10-fold more antibiotic killing of biofilm inhabitants than in absence of artificial channels. This innovative use of magnetic-nanoparticles for the eradication of biomaterial-associated infections requires no precise targeting of magnetic-nanoparticles and allows more effective use of existing antibiotics by breaking the penetration barrier of an infectious biofilm adhering to a biomaterial implant surface on-demand.


Asunto(s)
Antibacterianos , Nanopartículas de Magnetita , Antibacterianos/farmacología , Materiales Biocompatibles , Biopelículas , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...