Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(42): 50552-50563, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34661383

RESUMEN

Growth of 2D materials under ultrahigh-vacuum (UHV) conditions allows for an in situ characterization of samples with direct spectroscopic insight. Heteroepitaxy of transition-metal dichalcogenides (TMDs) in UHV remains a challenge for integration of several different monolayers into new functional systems. In this work, we epitaxially grow lateral WS2-MoS2 and vertical WS2/MoS2 heterostructures on graphene. By means of scanning tunneling spectroscopy (STS), we first examined the electronic structure of monolayer MoS2, WS2, and WS2/MoS2 vertical heterostructure. Moreover, we investigate a band bending in the vicinity of the narrow one-dimensional (1D) interface of the WS2-MoS2 lateral heterostructure and mirror twin boundary (MTB) in the WS2/MoS2 vertical heterostructure. Density functional theory (DFT) is used for the calculation of the band structures, as well as for the density of states (DOS) maps at the interfaces. For the WS2-MoS2 lateral heterostructure, we confirm type-II band alignment and determine the corresponding depletion regions, charge densities, and the electric field at the interface. For the MTB, we observe a symmetric upward bend bending and relate it to the dielectric screening of graphene affecting dominantly the MoS2 layer. Quasi-freestanding heterostructures with sharp interfaces, large built-in electric field, and narrow depletion region widths are proper candidates for future designing of electronic and optoelectronic devices.

2.
ACS Nano ; 15(8): 13516-13525, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34296863

RESUMEN

We prepared monolayers of tantalum sulfide on Au(111) by evaporation of Ta in a reactive background of H2S. Under sulfur-rich conditions, monolayers of 2H-TaS2 formed, whereas under sulfur-poor conditions TaS2-x with 0 ≤ x ≤ 1 were found. We identified this phase as TaS, a structure that can be derived from 2H-TaS2 by removal of the bottom S layer.

3.
Nano Lett ; 18(9): 6045-6056, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30157652

RESUMEN

We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 1014 cm-2 is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by ∼60 cm-1. The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.

4.
Phys Rev Lett ; 120(10): 106801, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570315

RESUMEN

We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.

5.
Phys Rev Lett ; 118(11): 116401, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368636

RESUMEN

We present direct experimental evidence of broken chirality in graphene by analyzing electron scattering processes at energies ranging from the linear (Dirac-like) to the strongly trigonally warped region. Furthermore, we are able to measure the energy of the van Hove singularity at the M point of the conduction band. Our data show a very good agreement with theoretical calculations for free-standing graphene. We identify a new intravalley scattering channel activated in case of a strongly trigonally warped constant energy contour, which is not suppressed by chirality. Finally, we compare our experimental findings with T-matrix simulations with and without the presence of a pseudomagnetic field and suggest that higher order electron hopping effects are a key factor in breaking the chirality near to the van Hove singularity.

6.
ACS Nano ; 10(12): 11012-11026, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-28024332

RESUMEN

Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.

8.
ACS Nano ; 8(12): 12208-18, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25486329

RESUMEN

We expose epitaxial graphene (Gr) on Ir(111) to low-energy noble gas ion irradiation and investigate by scanning tunneling microscopy and atomistic simulations the behavior of C atoms detached from Gr due to ion impacts. Consistent with our density functional theory calculations, upon annealing Gr nanoplatelets nucleate at the Gr/Ir(111) interface from trapped C atoms initially displaced with momentum toward the substrate. Making use of the nanoplatelet formation phenomenon, we measure the trapping yield as a function of ion energy and species and compare the values to those obtained using molecular dynamics simulations. Thereby, complementary to the sputtering yield, the trapping yield is established as a quantity characterizing the response of supported 2D materials to ion exposure. Our findings shed light on the microscopic mechanisms of defect production in supported 2D materials under ion irradiation and pave the way toward precise control of such systems by ion beam engineering.

9.
Phys Rev Lett ; 112(1): 016803, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24483918

RESUMEN

High-quality films of the ferromagnetic semiconductor EuO are grown on epitaxial graphene on Ir(111) and investigated in situ with scanning tunneling microscopy and spectroscopy. Electron scattering at defects leads to standing-wave patterns, manifesting the existence of a surface state in EuO. The surface state is analyzed at different temperatures and energies. We observe a pronounced energy shift of the surface state when cooling down below the Curie temperature TC, which indicates a spin polarization of this state at low temperatures. The experimental results are in agreement with corresponding density functional theory calculations.

10.
Nano Lett ; 13(11): 5013-9, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24131290

RESUMEN

The ease by which graphene is affected through contact with other materials is one of its unique features and defines an integral part of its potential for applications. Here, it will be demonstrated that intercalation, the insertion of atomic layers in between the backside of graphene and the supporting substrate, is an efficient tool to change its interaction with the environment on the frontside. By partial intercalation of graphene on Ir(111) with Eu or Cs we induce strongly n-doped graphene patches through the contact with these intercalants. They coexist with nonintercalated, slightly p-doped graphene patches. We employ these backside doping patterns to directly visualize doping induced binding energy differences of ionic adsorbates to graphene through low-temperature scanning tunneling microscopy. Density functional theory confirms these binding energy differences and shows that they are related to the graphene doping level.

11.
Phys Rev Lett ; 111(5): 056804, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952430

RESUMEN

Free-electron-like image potential states are observed in scanning tunneling spectroscopy on graphene quantum dots on Ir(111) acting as potential wells. The spectrum strongly depends on the size of the nanostructure as well as on the spatial position on top, indicating lateral confinement. Analysis of the substructure of the first state by the spatial mapping of the constant energy local density of states reveals characteristic patterns of confined states. The most pronounced state is not the ground state, but an excited state with a favorable combination of the local density of states and parallel momentum transfer in the tunneling process. Chemical gating tunes the confining potential by changing the local work function. Our experimental determination of this work function allows us to deduce the associated shift of the Dirac point.


Asunto(s)
Grafito/química , Microscopía de Túnel de Rastreo/instrumentación , Microscopía de Túnel de Rastreo/métodos , Modelos Teóricos , Puntos Cuánticos , Tamaño de la Partícula , Termodinámica
12.
Nano Lett ; 13(5): 1948-55, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23570261

RESUMEN

By combining ion beam experiments and atomistic simulations we study the production of defects in graphene on Ir(111) under grazing incidence of low energy Xe ions. We demonstrate that the ions are channeled in between graphene and the substrate, giving rise to chains of vacancy clusters with their edges bending down toward the substrate. These clusters self-organize to a graphene nanomesh via thermally activated diffusion as their formation energy varies within the graphene moiré supercell.

13.
Adv Mater ; 25(14): 1967-72, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23382024

RESUMEN

The zigzag edges of graphene on Ir(111) are studied by ab initio simulations and low-temperature scanning tunneling spectroscopy, providing information about their structural, electronic, and magnetic properties. No edge state is found to exist, which is explained in terms of the interplay between a strong geometrical relaxation at the edge and a hybridization of the d orbitals of Ir atoms with the graphene orbitals at the edge.


Asunto(s)
Grafito/química , Hierro/química , Microscopía de Túnel de Rastreo , Nanoestructuras/química , Teoría Cuántica
14.
ACS Nano ; 6(11): 9951-63, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23039853

RESUMEN

Using X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM) we resolve the temperature-, time-, and flake size-dependent intercalation phases of oxygen underneath graphene on Ir(111) formed upon exposure to molecular oxygen. Through the applied pressure of molecular oxygen the atomic oxygen created on the bare Ir terraces is driven underneath graphene flakes. The importance of substrate steps and of the unbinding of graphene flake edges from the substrate for the intercalation is identified. With the use of CO titration to selectively remove oxygen from the bare Ir terraces the energetics of intercalation is uncovered. Cluster decoration techniques are used as an efficient tool to visualize intercalation processes in real space.


Asunto(s)
Cristalización/métodos , Grafito/química , Iridio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Oxígeno/química , Sustancias Intercalantes/química , Cinética , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
15.
J Phys Condens Matter ; 24(31): 314208, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22820667

RESUMEN

We show here that Br(2) intercalation is an efficient method to enable exfoliation of epitaxial graphene on metals by adhesive tape. We exemplify this method for high-quality graphene of macroscopic extension on Ir(111). The sample quality and the transfer process are monitored using low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), scanning electron microscopy (SEM) and Raman spectroscopy. The developed process provides an opportunity for preparing graphene of strictly monatomic thickness and well-defined orientation including the transfer to poly(ethylene terephthalate) (PET) foil.

16.
J Phys Condens Matter ; 24(12): 124103, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22394986

RESUMEN

We study the structure and stability of the first water layer on Pt(111) by variable-temperature scanning tunneling microscopy. We find that a high Pt step edge density considerably increases the long-range order of the equilibrium √37 × âˆš37R25.3°- and √39 × âˆš39R16.1°-superstructures, presumably due to the capability of step edges to trap residual adsorbates from the surface. Passivating the step edges with CO or preparing a flat metal surface leads to the formation of disordered structures, which still show the same structural elements as the ordered ones. Coadsorption of Xe and CO proves that the water layer covers the metal surface completely. Moreover, we determine the two-dimensional crystal structure of Xe on top of the chemisorbed water layer which exhibits an Xe-Xe distance close to the one in bulk Xe and a rotation angle of 90° between the close-packed directions of Xe and the close-packed directions of the underlying water layer. CO is shown to replace H(2)O on the Pt(111) surface as has been deduced previously. In addition, we demonstrate that tunneling of electrons into the antibonding state or from the bonding state of H(2)O leads to dissociation of the molecules and a corresponding reordering of the adlayer into a √3 × âˆš3R30°-structure. Finally, a so far not understood restructuring of the adlayer by an increased tunneling current has been observed.

17.
Nano Lett ; 12(2): 678-82, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22175792

RESUMEN

Following graphene growth by thermal decomposition of ethylene on Ir(111) at high temperatures we analyzed the strain state and the wrinkle formation kinetics as function of temperature. Using the moiré spot separation in a low energy electron diffraction pattern as a magnifying mechanism for the difference in the lattice parameters between Ir and graphene, we achieved an unrivaled relative precision of ±0.1 pm for the graphene lattice parameter. Our data reveals a characteristic hysteresis of the graphene lattice parameter that is explained by the interplay of reversible wrinkle formation and film strain. We show that graphene on Ir(111) always exhibits residual compressive strain at room temperature. Our results provide important guidelines for strategies to avoid wrinkling.


Asunto(s)
Grafito/química , Iridio/química , Cinética , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
18.
Phys Rev Lett ; 107(3): 036101, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21838377

RESUMEN

The nonlocal van der Waals density functional approach is applied to calculate the binding of graphene to Ir(111). The precise agreement of the calculated mean height h = 3.41 Å of the C atoms with their mean height h = (3.38±0.04) Å as measured by the x-ray standing wave technique provides a benchmark for the applicability of the nonlocal functional. We find bonding of graphene to Ir(111) to be due to the van der Waals interaction with an antibonding average contribution from chemical interaction. Despite its globally repulsive character, in certain areas of the large graphene moiré unit cell charge accumulation between Ir substrate and graphene C atoms is observed, signaling a weak covalent bond formation.

19.
ACS Nano ; 4(1): 297-311, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20000754

RESUMEN

Molecular chirality on surfaces has been widely explored, both for intrinsically chiral molecules and for prochiral molecules that become chiral upon adsorption due to the reduced symmetry which follows from surface confinement. However, little attention has been devoted to chiral effects that originate from conformational degrees of freedom for adsorbed molecules. Here we have used scanning tunneling microscopy to investigate the self-assembled structures formed when a class of six linear, organic molecules (oligo-phenylene-ethynylenes) are adsorbed on a Au(111) surface under ultrahigh vacuum conditions. All of the investigated compounds are intrinsically achiral, but most display conformational chirality in the sense that the molecules can adsorb on the surface in different conformations giving rise to either one of two chiral surface enantiomers or a mirror-symmetric achiral meso form. A total of eleven observed adsorption structures are systematically investigated with respect to conformational chirality as well as point chirality (arising where molecular adsorption locally breaks the substrate symmetry) and organizational chirality (arising from the tiling pattern of the molecular backbones). A number of interesting correlations are identified between these different levels of chirality. Most importantly, we demonstrate that it is possible through control of the terminal group functionalization to steer the oligo(phenylene-ethynylene) molecular backbones into surface assemblies that either display pronounced organizational chirality or have mirror symmetric tiling patterns, and that it is furthermore possible to control the conformational surface chirality so the compounds preferentially assume either chiral or achiral surface conformers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...