Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 27(2): 1417-1427, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31749002

RESUMEN

The differences in the mechanism of cadmium (Cd) accumulation in the grains of different wheat (Triticum aestivum L.) cultivars remain unclear. Thus, we conducted a hydroponic experiment in a greenhouse to compare root surface adsorption, root uptake, subcellular distribution, and chemical forms of Cd between low- and high-Cd-accumulating wheat cultivars at seedling stage, to improve our understanding of the differences between cultivars. The results showed that Cd adsorbed on the root surface was mainly in a complexed form, and the total amount of Cd on the Yaomai16 (YM, high-Cd-accumulating genotypes) root surface was higher (p < 0.05) than that on Xinmai9817 (XM, low-Cd-accumulating genotypes). A large amount of Cd ions adsorbed on root surface would cause plant damage and inhibit growth. Comparing the root-to-shoot translocation factors of Cd, the transfer coefficients of YM were 1.017, 1.446, 1.464, and 1.030 times higher than those of XM under 5, 10, 50, and 100 µmol L-1 Cd treatments, respectively. The subcellular distribution of Cd under Cd exposure is mainly in the cell wall and soluble fraction. The proportions of Cd in YM shoot soluble fraction were higher than those in XM, which was the main detoxification mechanism limiting the activity of Cd and may be responsible for low Cd accumulation in grains, while the effects of the chemical forms of Cd on migration and detoxification were not found to be related to Cd accumulation in the kernels.


Asunto(s)
Cadmio/análisis , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis , Triticum/metabolismo , Adsorción , Hidroponía , Raíces de Plantas/química , Semillas/metabolismo , Fracciones Subcelulares/química
2.
Biocell ; 29(3): 279-285, Aug.-Dec. 2005. graf, tab
Artículo en Inglés | LILACS | ID: lil-633234

RESUMEN

Seed size is a crucial plant trait that may potentially affect not only immediate seedling success but also the subsequent generation. We examined variation in seed weight of Wyoming sagebrush (Artemisia tridentata ssp. wyomingensis Beetle and Young), an excellent candidate species for rangeland restoration. The working hypothesis was that a major fraction of spatial and temporal variability in seed size (weight) of Wyoming sagebrush could be explained by variations in mean monthly temperatures and precipitation. Seed collection was conducted at Battle Mountain and Eden Valley sites in northern Nevada, USA, during November of 2002 and 2003. Frequency distributions of seed weight varied from leptokurtic to platykurtic, and from symmetry to skewness to the right for both sites and years. Mean seed weight varied by a factor of 1.4 between locations and years. Mean seed weight was greater (P<0.05) in 2003 than in 2002 at both sites. This can partially be attributed to 55% greater precipitation in 2003 than 2002, since mean monthly temperatures were similar (P>0.05) in all study situations. Simple linear regression showed that monthly precipitation (March to November) explained 85% of the total variation in mean seed weight ( P=0.079). Since the relationship between mean monthly temperature (June-November) and mean seed weight was not significant (r²=0.00, P=0.431), this emphasizes the importance of precipitation as an important determinant of mean seed weight. Our results suggest that the precipitation regime to which the mother plant is exposed can have a significant effect on sizes of seeds produced. Hence, seasonal changes in water availability would tend to alter size distributions of produced offspring.


Asunto(s)
Artemisia/fisiología , Variación Genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Clima , Modelos Lineales , Nevada , Lluvia , Estaciones del Año , Especificidad de la Especie , Temperatura
3.
Biocell ; 29(3): 279-85, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16524249

RESUMEN

Seed size is a crucial plant trait that may potentially affect not only immediate seedling success but also the subsequent generation. We examined variation in seed weight of Wyoming sagebrush (Artemisia tridentata ssp. wyomingensis Beetle and Young), an excellent candidate species for rangeland restoration. The working hypothesis was that a major fraction of spatial and temporal variability in seed size (weight) of Wyoming sagebrush could be explained by variations in mean monthly temperatures and precipitation. Seed collection was conducted at Battle Mountain and Eden Valley sites in northern Nevada, USA, during November of 2002 and 2003. Frequency distributions of seed weight varied from leptokurtic to platykurtic, and from symmetry to skewness to the right for both sites and years. Mean seed weight varied by a factor of 1.4 between locations and years. Mean seed weight was greater (P < 0.05) in 2003 than in 2002 at both sites. This can partially be attributed to 55% greater precipitation in 2003 than 2002, since mean monthly temperatures were similar (P > 0.05) in all study situations. Simple linear regression showed that monthly precipitation (March to November) explained 85% of the total variation in mean seed weight (P = 0.079). Since the relationship between mean monthly temperature (June-November) and mean seed weight was not significant (r2 = 0.00, P = 0.431), this emphasizes the importance of precipitation as an important determinant of mean seed weight. Our results suggest that the precipitation regime to which the mother plant is exposed can have a significant effect on sizes of seeds produced. Hence, seasonal changes in water availability would tend to alter size distributions of produced offspring.


Asunto(s)
Artemisia/fisiología , Variación Genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Clima , Modelos Lineales , Nevada , Lluvia , Estaciones del Año , Especificidad de la Especie , Temperatura
4.
Biocell ; 29(3): 279-85, 2005 Dec.
Artículo en Inglés | BINACIS | ID: bin-38234

RESUMEN

Seed size is a crucial plant trait that may potentially affect not only immediate seedling success but also the subsequent generation. We examined variation in seed weight of Wyoming sagebrush (Artemisia tridentata ssp. wyomingensis Beetle and Young), an excellent candidate species for rangeland restoration. The working hypothesis was that a major fraction of spatial and temporal variability in seed size (weight) of Wyoming sagebrush could be explained by variations in mean monthly temperatures and precipitation. Seed collection was conducted at Battle Mountain and Eden Valley sites in northern Nevada, USA, during November of 2002 and 2003. Frequency distributions of seed weight varied from leptokurtic to platykurtic, and from symmetry to skewness to the right for both sites and years. Mean seed weight varied by a factor of 1.4 between locations and years. Mean seed weight was greater (P < 0.05) in 2003 than in 2002 at both sites. This can partially be attributed to 55


greater precipitation in 2003 than 2002, since mean monthly temperatures were similar (P > 0.05) in all study situations. Simple linear regression showed that monthly precipitation (March to November) explained 85


of the total variation in mean seed weight (P = 0.079). Since the relationship between mean monthly temperature (June-November) and mean seed weight was not significant (r2 = 0.00, P = 0.431), this emphasizes the importance of precipitation as an important determinant of mean seed weight. Our results suggest that the precipitation regime to which the mother plant is exposed can have a significant effect on sizes of seeds produced. Hence, seasonal changes in water availability would tend to alter size distributions of produced offspring.

5.
Biocell ; 26(3): 309-17, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12619563

RESUMEN

The effects of water stress on leaf water relations and growth are reported for three perennial tussock grass genotypes under glasshouse conditions. Studies were performed in genotypes El Palmar INTA and Selección Anguil of Agropyron scabrifolium (Döell) Parodi, and El Vizcachero of A. elongatum (Host) Beauv. Agropyron scabrifolium El Palmar INTA is native to a region with warm-temperate and humid climate without a dry season, and an average annual precipitation of 900 mm. Agropyron scabrifolium Selección Anguil comes from a region with a sub-humid, dry to semiarid climate and a mean annual precipitation of 600 mm. Agropyron elongatum is a widespread forage in semiarid Argentina with well-known water stress resistance. A mild water stress treatment was imposed slowly; plants reached a minimum pre-dawn leaf water potential of about -1.83 MPa by day 21 after watering was withheld. In all genotypes, water stress led to a reduction of leaf growth. There was a tendency for a greater epicuticular wax accumulation on water-stressed plants of A. scabrifolium Selección Anguil and A. elongatum than on those of A. scabrifolium El Palmar INTA. This may have contributed to obtain greater turgor pressures and relative water contents in the first two than in the later genotype. In turn, this may have contributed to determine smaller leaf growth rate reductions in A. scabrifolium Selección Anguil and A. elongatum than in A. scabrifolium El Palmar INTA under water stress. This study demonstrated variation in water stress resistance between genotypes in A. scabrifolium, and between A. scabrifolium Selección Anguil and A. elongatum versus A. scabrifolium El Palmar INTA, which was related to their differential responses in water relations.


Asunto(s)
Agropyron/genética , Agropyron/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Agua/metabolismo , Agricultura , Agropyron/efectos de los fármacos , Desastres , Presión Osmótica , Hojas de la Planta/efectos de los fármacos , Factores de Tiempo , Agua/farmacología , Ceras/análisis
6.
Biocell ; 26(3): 309-17, 2002 Dec.
Artículo en Inglés | BINACIS | ID: bin-39051

RESUMEN

The effects of water stress on leaf water relations and growth are reported for three perennial tussock grass genotypes under glasshouse conditions. Studies were performed in genotypes El Palmar INTA and Selección Anguil of Agropyron scabrifolium (D÷ell) Parodi, and El Vizcachero of A. elongatum (Host) Beauv. Agropyron scabrifolium El Palmar INTA is native to a region with warm-temperate and humid climate without a dry season, and an average annual precipitation of 900 mm. Agropyron scabrifolium Selección Anguil comes from a region with a sub-humid, dry to semiarid climate and a mean annual precipitation of 600 mm. Agropyron elongatum is a widespread forage in semiarid Argentina with well-known water stress resistance. A mild water stress treatment was imposed slowly; plants reached a minimum pre-dawn leaf water potential of about -1.83 MPa by day 21 after watering was withheld. In all genotypes, water stress led to a reduction of leaf growth. There was a tendency for a greater epicuticular wax accumulation on water-stressed plants of A. scabrifolium Selección Anguil and A. elongatum than on those of A. scabrifolium El Palmar INTA. This may have contributed to obtain greater turgor pressures and relative water contents in the first two than in the later genotype. In turn, this may have contributed to determine smaller leaf growth rate reductions in A. scabrifolium Selección Anguil and A. elongatum than in A. scabrifolium El Palmar INTA under water stress. This study demonstrated variation in water stress resistance between genotypes in A. scabrifolium, and between A. scabrifolium Selección Anguil and A. elongatum versus A. scabrifolium El Palmar INTA, which was related to their differential responses in water relations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA