Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Arthritis Res Ther ; 26(1): 119, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863059

RESUMEN

OBJECTIVE: In gout, monosodium urate crystals are taken up by macrophages, triggering the activation of the NLRP3 inflammasome and the maturation of IL-1ß. This study aimed to investigate the role of integrin CD11b in inflammasome activation in macrophages stimulated by MSU. METHODS: BMDM from WT and CD11b KO mice were stimulated in vitro with MSU crystals. Cellular supernatants were collected to assess the expression of the inflammatory cytokines by enzyme-linked immunosorbent assay and western blot methods. The role of integrin CD11b in MSU-induced gouty arthritis in vivo was investigated by intra-articular injection of MSU crystals. Real-time extracellular acidification rate and oxygen consumption rate of BMDMs were measured by Seahorse Extracellular Flux Analyzer. RESULTS: We demonstrate that CD11b-deficient mice developed exacerbated gouty arthritis with increased recruitment of leukocytes in the joint and higher IL-1ß levels in the sera. In macrophages, genetic deletion of CD11b induced a shift of macrophage metabolism from oxidative phosphorylation to glycolysis, thus decreasing the overall generation of intracellular ATP. Upon MSU stimulation, CD11b-deficient macrophages showed an exacerbated secretion of IL-1ß. Treating wild-type macrophages with a CD11b agonist, LA1, inhibited MSU-induced release of IL-1ß in vitro and attenuated the severity of experimental gouty arthritis. Importantly, LA1, was also effective in human cells as it inhibited MSU-induced release of IL-1ß by peripheral blood mononuclear cells from healthy donors. CONCLUSION: Our data identified the CD11b integrin as a principal cell membrane receptor that modulates NLRP3 inflammasome activation by MSU crystal in macrophages, which could be a potential therapeutic target to treat gouty arthritis in human patients.


Asunto(s)
Artritis Gotosa , Antígeno CD11b , Inflamasomas , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Úrico , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Antígeno CD11b/metabolismo , Inflamasomas/metabolismo , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Ratones , Masculino
2.
Artículo en Inglés | MEDLINE | ID: mdl-38290792

RESUMEN

OBJECTIVE: Cartilage pathologic calcification is a hallmark of osteoarthritis (OA). Here, we aimed to describe a new ex vivo human model to study the progression of cartilage calcification. METHOD: Cartilage explants (n = 11), as well as primary chondrocytes (n = 3), were obtained from OA patients undergoing knee replacement. Explants and chondrocytes were cultured in control (NT) or calcification (CM) medium (supplemented with ascorbic acid and ß-glycerophosphate). Calcification was evaluated by micro-CT scan at day 0 and 21 in explants, and by Alizarin red staining in chondrocyte monolayers. Raman spectrometry allowed characterization of the crystal type. Interleukin-6 (IL-6) secretion in explant and cell supernatants was measured by ELISA. Finally, matrix degradation was evaluated by Safranin-O staining of explant sections and by glycosaminoglycans (GAG) release in supernatants. RESULTS: Micro-CT scan showed calcifications in all explants at baseline (day 0), which in the CM group increased significantly in number and size after 21 days compared with the NT group. Raman spectrometry revealed that crystals were exclusively basic calcium phosphate crystals (carbonated hydroxyapatite) both in NT and CM. IL-6 secretion was significantly increased in calcifying conditions. Finally, CM significantly increased cartilage catabolism as assessed by decreased Safranin-O staining of tissue explants and increased GAG release in supernatants. CM effects (enhanced calcification, IL-6 secretion and proteoglycans turn-over) were recapitulated in vitro in OA chondrocytes. CONCLUSIONS: We have described a new ex vivo human model of cartilage calcification that can summurize the triad of events seen during osteoarthritis progression, i.e. calcification, inflammation, and cartilage degradation. This model will allow the identification of new anti-calcification compounds.

3.
Biomed Pharmacother ; 171: 116075, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183742

RESUMEN

Lysyl oxidases (LOX(L)) are enzymes that catalyze the formation of cross-links in collagen and elastin fibers during physiologic calcification of bone. However, it remains unknown whether they may promote pathologic calcification of articular cartilage, an important hallmark of debilitating arthropathies. Here, we have studied the possible roles of LOX(L) in cartilage calcification, related and not related to their cross-linking activity. We first demonstrated that inhibition of LOX(L) by ß-aminoproprionitrile (BAPN) significantly reduced calcification in murine and human chondrocytes, and in joint of meniscectomized mice. These BAPN's effects on calcification were accounted for by different LOX(L) roles. Firstly, reduced LOX(L)-mediated extracellular matrix cross-links downregulated Anx5, Pit1 and Pit2 calcification genes. Secondly, BAPN reduced collagen fibrotic markers Col1 and Col3. Additionally, LOX(L) inhibition blocked chondrocytes hypertrophic differentiation (Runx2 and COL10), pro-inflammatory IL-6 release and reactive oxygen species (ROS) production, all triggers of chondrocyte calcification. Through unbiased transcriptomic analysis we confirmed a positive correlation between LOX(L) genes and genes for calcification, hypertrophy and extracellular matrix catabolism. This association was conserved throughout species (mouse, human) and tissues that can undergo pathologic calcification (kidney, arteries, skin). Overall, LOX(L) play a critical role in the process of chondrocyte calcification and may be therapeutic targets to treat cartilage calcification in arthropathies.


Asunto(s)
Calcinosis , Cartílago Articular , Artropatías , Ratones , Humanos , Animales , Proteína-Lisina 6-Oxidasa/metabolismo , Aminopropionitrilo , Colágeno/metabolismo , Calcinosis/patología , Condrocitos/metabolismo , Hipertrofia , Cartílago Articular/metabolismo
4.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298730

RESUMEN

Pathological cartilage calcification is a hallmark feature of osteoarthritis, a common degenerative joint disease, characterized by cartilage damage, progressively causing pain and loss of movement. The integrin subunit CD11b was shown to play a protective role against cartilage calcification in a mouse model of surgery-induced OA. Here, we investigated the possible mechanism by which CD11b deficiency could favor cartilage calcification by using naïve mice. First, we found by transmission electron microscopy (TEM) that CD11b KO cartilage from young mice presented early calcification spots compared with WT. CD11b KO cartilage from old mice showed progression of calcification areas. Mechanistically, we found more calcification-competent matrix vesicles and more apoptosis in both cartilage and chondrocytes isolated from CD11b-deficient mice. Additionally, the extracellular matrix from cartilage lacking the integrin was dysregulated with increased collagen fibrils with smaller diameters. Moreover, we revealed by TEM that CD11b KO cartilage had increased expression of lysyl oxidase (LOX), the enzyme that catalyzes matrix crosslinks. We confirmed this in murine primary CD11b KO chondrocytes, where Lox gene expression and crosslinking activity were increased. Overall, our results suggest that CD11b integrin regulates cartilage calcification through reduced MV release, apoptosis, LOX activity, and matrix crosslinking. As such, CD11b activation might be a key pathway for maintaining cartilage integrity.


Asunto(s)
Calcinosis , Cartílago Articular , Animales , Ratones , Apoptosis , Calcinosis/patología , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Matriz Extracelular/patología , Integrinas/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Antígeno CD11b/genética
5.
Genes (Basel) ; 14(5)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37239465

RESUMEN

OBJECTIVES: CD11B/ITGAM (Integrin Subunit α M) mediates the adhesion of monocytes, macrophages, and granulocytes and promotes the phagocytosis of complement-coated particles. Variants of the ITGAM gene are candidates for genetic susceptibility to systemic lupus erythematosus (SLE). SNP rs1143679 (R77H) of CD11B particularly increases the risk of developing SLE. Deficiency of CD11B is linked to premature extra-osseous calcification, as seen in the cartilage of animals with osteoarthritis. Serum calcification propensity measured by the T50 test is a surrogate marker for systemic calcification and reflects increased cardiovascular (CV) risk. We aimed to assess whether the CD11B R77H gene variant is associated with a higher serum calcification propensity (i.e., a lower T50 value) in SLE patients compared to the wild-type allele (WT). METHODS: Cross-sectional study incorporating adults with SLE genotyped for the CD11B variant R77H and assessed for serum calcification propensity with the T50 method. Participants were included in a multicenter trans-disciplinary cohort and fulfilled the 1997 revised American College of Rheumatology (ACR) criteria for SLE. We used descriptive statistics for comparing baseline characteristics and sequential T50 measurements in subjects with the R77H variant vs. WT CD11B. RESULTS: Of the 167 patients, 108 (65%) were G/G (WT), 53 (32%) were G/A heterozygous, and 6 (3%) were A/A homozygous for the R77H variant. A/A patients cumulated more ACR criteria upon inclusion (7 ± 2 vs. 5 ± 1 in G/G and G/A; p = 0.02). There were no differences between the groups in terms of global disease activity, kidney involvement, and chronic renal failure. Complement C3 levels were lower in A/A individuals compared to others (0.6 ± 0.08 vs. 0.9 ± 0.25 g/L; p = 0.02). Baseline T50 did not differ between the groups (A/A 278 ± 42' vs. 297 ± 50' in G/G and G/A; p = 0.28). Considering all sequential T50 test results, serum calcification propensity was significantly increased in A/A individuals compared to others (253 ± 50 vs. 290 ± 54; p = 0.008). CONCLUSIONS: SLE patients with homozygosity for the R77H variant and repeated T50 assessment displayed an increased serum calcification propensity (i.e., a lower T50) and lower C3 levels compared to heterozygous and WT CD11B, without differing with respect to global disease activity and kidney involvement. This suggests an increased CV risk in SLE patients homozygous for the R77H variant of CD11B.


Asunto(s)
Antígeno CD11b , Calcinosis , Lupus Eritematoso Sistémico , Calcinosis/genética , Estudios Transversales , Predisposición Genética a la Enfermedad , Genotipo , Lupus Eritematoso Sistémico/genética , Macrófagos , Humanos , Antígeno CD11b/genética
6.
Nat Rev Rheumatol ; 19(1): 10-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509917

RESUMEN

Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Calcio/metabolismo , Relevancia Clínica , Osteoartritis/patología , Cartílago Articular/metabolismo , Condrocitos/metabolismo
7.
EBioMedicine ; 81: 104081, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35660787

RESUMEN

BACKGROUND: Cartilage damage in inflammatory arthritis is attributed to inflammatory cytokines and pannus infiltration. Activation of the coagulation system is a well known feature of arthritis, especially in rheumatoid arthritis (RA). Here we describe mechanisms by which fibrin directly mediates cartilage degeneration. METHODS: Fibrin deposits were stained on cartilage and synovial tissue of RA and osteoarthritis (OA) patients and in murine adjuvant-induced arthritis (AIA) in wild-type or fibrinogen deficient mice. Fibrinogen expression and procoagulant activity in chondrocytes were evaluated using qRT-PCR analysis and turbidimetry. Chondro-synovial adhesion was studied in co-cultures of human RA cartilage and synoviocytes, and in the AIA model. Calcific deposits were stained in human RA and OA cartilage and in vitro in fibrinogen-stimulated chondrocytes. FINDINGS: Fibrin deposits on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA in wild-type mice, whilst fibrinogen deficient mice were protected. Fibrin upregulated Adamts5 and Mmp13 in chondrocytes. Chondro-synovial adhesion only occurred in fibrin-rich cartilage areas and correlated with cartilage damage. In vitro, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-rich areas. Fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization by inducing pro-calcification genes (Anx5, Pit1, Pc1) and the IL-6 cytokine. Similar fibrin-mediated mechanisms were observed in OA models, but to a lesser extent and without pseudo-membranes formation. INTERPRETATION: In arthritis, fibrin plaques directly impair cartilage integrity via a triad of catabolism, adhesion, and calcification. FUNDING: None.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Animales , Artritis Reumatoide/metabolismo , Cartílago/metabolismo , Condrocitos/metabolismo , Fibrina/metabolismo , Fibrinógeno/genética , Fibrinógeno/metabolismo , Humanos , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Membrana Sinovial
8.
Antioxidants (Basel) ; 10(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34573065

RESUMEN

Pathologic calcification (PC) is a painful and disabling condition whereby calcium-containing crystals deposit in tissues that do not physiologically calcify: cartilage, tendons, muscle, vessels and skin. In cartilage, compression and inflammation triggered by PC leads to cartilage degradation typical of osteoarthritis (OA). The PC process is poorly understood and treatments able to target the underlying mechanisms of the disease are lacking. Here we show a crucial role of the gasotransmitter hydrogen sulfide (H2S) and, in particular, of the H2S-producing enzyme cystathionine γ-lyase (CSE), in regulating PC in cartilage. Cse deficiency (Cse KO mice) exacerbated calcification in both surgically-induced (menisectomy) and spontaneous (aging) murine models of cartilage PC, and augmented PC was closely associated with cartilage degradation (OA). On the contrary, Cse overexpression (Cse tg mice) protected from these features. In vitro, Cse KO chondrocytes showed increased calcification, potentially via enhanced alkaline phosphatase (Alpl) expression and activity and increased IL-6 production. The opposite results were obtained in Cse tg chondrocytes. In cartilage samples from patients with OA, CSE expression inversely correlated with the degree of tissue calcification and disease severity. Increased cartilage degradation in murine and human tissues lacking or expressing low CSE levels may be accounted for by dysregulated catabolism. We found higher levels of matrix-degrading metalloproteases Mmp-3 and -13 in Cse KO chondrocytes, whereas the opposite results were obtained in Cse tg cells. Finally, by high-throughput screening, we identified a novel small molecule CSE positive allosteric modulator (PAM), and demonstrated that it was able to increase cellular H2S production, and decrease murine and human chondrocyte calcification and IL-6 secretion. Together, these data implicate impaired CSE-dependent H2S production by chondrocytes in the etiology of cartilage PC and worsening of secondary outcomes (OA). In this context, enhancing CSE expression and/or activity in chondrocytes could represent a potential strategy to inhibit PC.

10.
Front Cell Dev Biol ; 9: 612440, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634117

RESUMEN

Pathologic calcification of cartilage consists of the formation of basic calcium phosphate (BCP) and/or calcium pyrophosphate dihydrate (CPPD) containing calcium crystals in mature hyaline or articular cartilage and is associated with aging, cartilage injury and likely plays a role in accelerating the pathology of osteoarthritis (OA). The pathways regulating joint calcification, in particular cartilage calcification, are not completely understood, but inflammation and the formation of reactive oxygen species (ROS) are contributory factors. The xanthine oxidase (XO) form of xanthine oxidoreductase (XOR), the key enzyme in xanthine and uric acid metabolism, is a major cellular source of superoxide. We hypothesized that XOR could be implicated in chondrocyte mineralization and cartilage calcification and degradation in OA. We showed both in murine primary chondrocyte and chondrogenic ATDC5 cells, that mineralization was inhibited by two different XOR inhibitors, febuxostat and allopurinol. In addition, XOR inhibition reduced the expression of the pro-mineralizing cytokine interleukin-6 (IL-6). We next generated XOR knock-out chondrocyte cell lines with undetectable XOR expression and XO activity. XOR knock-out chondrocyte cells showed decreased mineralization and reduced alkaline phosphatase (Alp) activity. To assess the precise form of XOR involved, primary chondrocytes of XOR mutant mice expressing either the XDH form (XDH ki) or the XO form (XO ki) were studied. We found that XO ki chondrocytes exhibited increased mineralization compared to XDH ki chondrocytes, and this was associated with enhanced Alp activity, ROS generation and IL-6 secretion. Finally, we found increased XOR expression in damaged vs. undamaged cartilage obtained from OA patients and XOR expression partially co-localized with areas showing pathologic calcification. Altogether, our results suggest that XOR, via its XO form, contribute to chondrocyte mineralization and pathological calcification in OA cartilage.

11.
Front Immunol ; 11: 877, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477355

RESUMEN

Background: The NLRP3 inflammasome has been recognized as one of the key components of innate immunity. Gain-of-function mutations in the exon 3 of NLRP3 gene have been implicated in inflammatory diseases suggesting the presence of functionally important sites in this region. Q703K (c.2107C>A, p.Gln703Lys, also known in the literature as Q705K) is a common variant of NLRP3, that has been considered to be both clinically unremarkable or disease-causing with a reduced penetrance. Objectives: We aimed to investigate the potential genetic impact of the NLRP3 variant Q703K in patients with recurrent fever presenting with two autoinflammatory diseases: PFAPA (periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis) and CAPS (cryopyrin-associated periodic syndrome), as well as with undefined autoinflammatory disease (uAID). Methods: This is an international multicentric observational retrospective study characterizing the clinical phenotype of patients presenting with recurrent fever suspected to be of auto-inflammatory origin and where the Q703K NLRP3 variant was found. Monocytes of parents of 6 Q703K+ PFAPA patients were studied and levels of pro-inflammatory cytokines produced by monocytes of Q703K+ and Q703K- parents have been compared by ELISA. Results: We report 42 patients with the Q703K NLRP3 genetic variant: 21 were PFAPA patients, 6 had a CAPS phenotype, and 15 had an uAID. The phenotypes of PFAPA, CAPS and uAID were quite similar between Q703K positive and negative patients with the exception of increased prevalence of pharyngitis in the Q703K positive CAPS population compared to the negative one. The in vitro production of IL-1ß was not significantly different between Q703K+ and Q703K- monocytes from asymptomatic parents. Conclusion: The evidence we report in our study shows an increased prevalence of NLRP3 Q703K in patients with autoinflammatory diseases, suggesting an association between the Q703K variant and the risk of PFAPA, CAPS and uAID syndromes. However, we did not show a functional effect of this mutation on the inflammasome basal activity.


Asunto(s)
Enfermedades Autoinmunes/genética , Síndromes Periódicos Asociados a Criopirina/genética , Genotipo , Inflamasomas/metabolismo , Monocitos/inmunología , Mutación/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Células Cultivadas , Fiebre , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inflamasomas/genética , Cooperación Internacional , Linfadenitis , Faringitis , Polimorfismo Genético , Prevalencia , Riesgo , Estomatitis Aftosa , Síndrome
12.
Arthritis Res Ther ; 22(1): 49, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183900

RESUMEN

BACKGROUND: Osteoarthritis (OA) is characterized by the formation and deposition of calcium-containing crystals in joint tissues, but the underlying mechanisms are poorly understood. The gasotransmitter hydrogen sulfide (H2S) has been implicated in mineralization but has never been studied in OA. Here, we investigated the role of the H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) in cartilage calcification and OA development. METHODS: 3-MST expression was analyzed in cartilage from patients with different OA degrees, and in cartilage stimulated with hydroxyapatite (HA) crystals. The modulation of 3-MST expression in vivo was studied in the meniscectomy (MNX) model of murine OA, by comparing sham-operated to MNX knee cartilage. The role of 3-MST was investigated by quantifying joint calcification and cartilage degradation in WT and 3-MST-/- meniscectomized knees. Chondrocyte mineralization in vitro was measured in WT and 3-MST-/- cells. Finally, the effect of oxidative stress on 3-MST expression and chondrocyte mineralization was investigated. RESULTS: 3-MST expression in human cartilage negatively correlated with calcification and OA severity, and diminished upon HA stimulation. In accordance, cartilage from menisectomized OA knees revealed decreased 3-MST if compared to sham-operated healthy knees. Moreover, 3-MST-/- mice showed exacerbated joint calcification and OA severity if compared to WT mice. In vitro, genetic or pharmacologic inhibition of 3-MST in chondrocytes resulted in enhanced mineralization and IL-6 secretion. Finally, oxidative stress decreased 3-MST expression and increased chondrocyte mineralization, maybe via induction of pro-mineralizing genes. CONCLUSION: 3-MST-generated H2S protects against joint calcification and experimental OA. Enhancing H2S production in chondrocytes may represent a potential disease modifier to treat OA.


Asunto(s)
Cartílago Articular/metabolismo , Sulfuro de Hidrógeno/metabolismo , Osteoartritis de la Rodilla/metabolismo , Sulfurtransferasas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Calcinosis/genética , Calcinosis/metabolismo , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/patología , Condrocitos/metabolismo , Femenino , Humanos , Interleucina-6/metabolismo , Meniscectomía , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/genética , Sustancias Protectoras/metabolismo , Sulfurtransferasas/genética , Microtomografía por Rayos X/métodos
13.
Front Cell Dev Biol ; 8: 611757, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33392201

RESUMEN

Osteoarthritis (OA) is a progressive joint disease that is strongly associated with calcium-containing crystal formation (mineralization) by chondrocytes leading ultimately to cartilage calcification. However, this calcification process is poorly understood and treatments targeting the underlying disease mechanisms are lacking. The CD11b/CD18 integrin (Mac-1 or αMß2), a member of the beta 2 integrin family of adhesion receptors, is critically involved in the development of several inflammatory diseases, including rheumatoid arthritis and systemic lupus erythematosus. We found that in a collagen-induced arthritis, CD11b-deficient mice exhibited increased cartilage degradation compared to WT control animals. However, the functional significance of CD11b integrin signaling in the pathophysiology of chondrocytes remains unknown. CD11b expression was found in the extracellular matrix and in chondrocytes in both healthy and damaged human and murine articular cartilage. Primary murine CD11b KO chondrocytes showed increased mineralization when induced in vitro by secondary calciprotein particles (CPP) and quantified by Alizarin Red staining. This increased propensity to mineralize was associated with an increased alkaline phosphatase (Alp) expression (measured by qRT-PCR and activity assay) and an enhanced secretion of the pro-mineralizing IL-6 cytokine compared to control wild-type cells (measured by ELISA). Accordingly, addition of an anti-IL-6 receptor antibody to CD11b KO chondrocytes reduced significantly the calcification and identified IL-6 as a pro-mineralizing factor in these cells. In the same conditions, the ratio of qRT-PCR expression of collagen X over collagen II, and that of Runx2 over Sox9 (both ratio being indexes of chondrocyte hypertrophy) were increased in CD11b-deficient cells. Conversely, the CD11b activator LA1 reduced chondrocyte mineralization, Alp expression, IL-6 production and collagen X expression. In the meniscectomy (MNX) model of murine knee osteoarthritis, deficiency of CD11b led to more severe OA (OARSI scoring of medial cartilage damage in CD11b: 5.6 ± 1.8, in WT: 1.2 ± 0.5, p < 0.05, inflammation in CD11b: 2.8 ± 0.2, in WT: 1.4 ± 0.5). In conclusion, these data demonstrate that CD11b signaling prevents chondrocyte hypertrophy and chondrocyte mineralization in vitro and has a protective role in models of OA in vivo.

14.
Br J Pharmacol ; 177(4): 778-792, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31231793

RESUMEN

Calcification is the deposition of minerals, mainly hydroxyapatite, inside the cell or in the extracellular matrix. Physiological calcification is central for many aspects of development including skeletal and tooth growth; conversely, pathological mineralization occurs in soft tissues and is significantly associated with malfunction and impairment of the tissue where it is located. Various mechanisms have been proposed to explain calcification. However, this research area lacks a more integrative, systemic, and global perspective that could explain both physiological and pathological processes. In this review, we propose such an integrated explanation. Hydrogen sulfide (H2 S) is a newly recognized multifunctional gasotransmitters and tis actions have been studied in different physiological and pathological contexts, but little is known about its potential role on calcification. Interestingly, we found that H2 S promotes calcification under physiological conditions and has an inhibitory effect on pathological processes. This makes H2 S a potential therapy for diseases related to pathological calcification. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Matriz Extracelular
15.
Sci Rep ; 9(1): 17314, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754153

RESUMEN

The nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome mediates caspase-1 activation and IL-1ß processing and is implicated in autoinflammatory as well as other chronic inflammatory diseases. Recent studies have demonstrated that xanthine oxidoreductase (XOR) inhibition attenuated IL-1ß secretion in activated macrophages, but the detailed mechanism of inhibition remains unclear. In this study, we report that febuxostat, an inhibitor of XOR, suppressed NLRP3 inflammasome-mediated IL-1ß secretion and cell death by two mechanisms: in a mitochondrial ROS (mitoROS)-dependent and mitoROS-independent manner. MitoROS-independent effects of febuxostat were mediated by an increase of intracellular ATP and improved mitochondrial energetics via the activation of purine salvage pathway. Our findings suggest that cellular bioenergetics are important in regulating NLRP3 activation, and XOR inhibition may be clinically relevant in NLRP3-related inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Febuxostat/farmacología , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Xantina Deshidrogenasa/antagonistas & inhibidores , Animales , Antiinflamatorios/uso terapéutico , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/inmunología , Febuxostat/uso terapéutico , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cultivo Primario de Células , Purinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Xantina Deshidrogenasa/metabolismo
16.
Nat Commun ; 10(1): 4904, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659168

RESUMEN

Xanthine oxidoreductase has been implicated in cancer. Nonetheless, the role played by its two convertible forms, xanthine dehydrogenase (XDH) and oxidase (XO) during tumorigenesis is not understood. Here we produce XDH-stable and XO-locked knock-in (ki) mice to address this question. After tumor transfer, XO ki mice show strongly increased tumor growth compared to wild type (WT) and XDH ki mice. Hematopoietic XO expression is responsible for this effect. After macrophage depletion, tumor growth is reduced. Adoptive transfer of XO-ki macrophages in WT mice increases tumor growth. In vitro, XO ki macrophages produce higher levels of reactive oxygen species (ROS) responsible for the increased Tregs observed in the tumors. Blocking ROS in vivo slows down tumor growth. Collectively, these results indicate that the balance of XO/XDH plays an important role in immune surveillance of tumor development. Strategies that inhibit the XO form specifically may be valuable in controlling cancer growth.


Asunto(s)
Neoplasias/enzimología , Xantina Deshidrogenasa/genética , Xantina Oxidasa/genética , Animales , Proliferación Celular , Femenino , Técnicas de Sustitución del Gen , Humanos , Macrófagos/enzimología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Xantina Deshidrogenasa/metabolismo , Xantina Oxidasa/metabolismo
17.
J Biol Chem ; 293(7): 2546-2557, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29279328

RESUMEN

A variety of stimuli, including monosodium urate (MSU) crystals, activate the NLRP3 inflammasome, and this activation involves several molecular mechanisms including xanthine oxidase (XO) up-regulation and mitochondrial dysfunction. Upon oligomerization of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1 becomes active and cleaves the proinflammatory cytokine IL-1ß into its active secreted form. Hydrogen sulfide (H2S), a gasotransmitter mainly produced by cystathionine γ-lyase (CSE) in macrophages, could modulate inflammation. Here, we sought to investigate the effects of exogenous and endogenous H2S on NLRP3 inflammasome activation in vitro and in vivo Primed bone marrow-derived macrophages (BMDM) isolated from wildtype (wt) or CSE-deficient mice and human macrophages (THP1 cells and primary macrophages), were stimulated with MSU crystals in the presence or absence of a H2S donor, sodium thiosulfate (STS) or GYY4137 (GYY). In murine and human macrophages in vitro, both STS and GYY inhibited MSU crystal-induced IL-1ß secretion in a dose-dependent manner. Moreover, the H2S donors inhibited MSU crystal-induced XO/caspase-1 activities, mitochondrial reactive oxygen species (ROS) generation, and ASC oligomerization. Accordingly, IL-1ß secretion and XO/caspase-1 activities were higher in CSE-deficient BMDMs than in wt BMDMs. For in vivo studies, we experimentally induced peritonitis by intraperitoneal injection of MSU crystals into mice. GYY pretreatment ameliorated inflammation, evidenced by decreased IL-6/monocyte chemoattractant protein-1 (MCP-1) released into peritoneal lavages. Taken together, our results suggest that both exogenous (via H2S donors) and endogenous (via CSE) H2S production may represent approaches for managing, for example, acute gout or other inflammation conditions.


Asunto(s)
Sulfuro de Hidrógeno/inmunología , Inflamasomas/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Animales , Humanos , Inflamasomas/genética , Inflamación/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética
18.
Front Pharmacol ; 8: 282, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659793

RESUMEN

Background: Innate immune response components such as toll-like receptors (TLRs) and NLRP3-inflammasome act in concert to increase IL-1α/ß secretion by synovial macrophages. Previous results suggest that IL-1α/ß could be an important mediator involved in the pathogenesis of osteoarthritis (OA). Objectives: The aim of our study was to evaluate the role of NLRP3, IL-1ß, and IL-1α in the menisectomy (MNX) model of murine OA. Methods: Murine chondrocytes (CHs) and bone marrow-derived machrophages (BMDM) were stimulated with hydroxyapatite (HA) crystals, a form of calcium-containing crystal found in human OA, and IL-1ß and IL-6 secretion assayed by ELISA.Conversely, the ability of IL-1ß and IL-6 to induce CHs calcification was assessed in vitro by Alizarin red staining. Knees from 8 to 10 weeks old C57Bl/6J wild-type (WT) (n = 7), NLRP3-/- (n = 9), IL-1α-/- (n = 5), and IL-1ß-/- (n = 5) mice were menisectomized, using the sham-operated contralateral knee as control. 8 weeks later, knee cartilage degradation and synovial inflammation were evaluated by histology. In addition, apoptotic chondrocytes, metalloproteases activity, and collagen-type 2 expression were evaluated in all mice. Joint calcification and subchondral bone parameters were quantified by CT-scan in WT and IL-1ß-/- menisectomized knees. Results:In vitro, HA crystals induced significant increased IL-6 secretion by CHs, while IL-1ß remained undetectable.Conversely, both IL-6 and IL-1ß were able to increase chondrocytes mineralization. In vivo, operated knees exhibited OA features compared to sham-operated knees as evidenced by increased cartilage degradation and synovial inflammation. In menisectomized KO mice, severity and extent of cartilage lesions were similar (IL-1α-/- mice) or exacerbated (IL-1ß-/- and NLRP3-/- mice) compared to that of menisectomized WT mice. Metalloproteases activity, collagen-type 2 expression, chondrocytes apoptosis, and synovial inflammation were similar between KO and WT mice menisectomized knees. Moreover, the extent of joint calcification in osteoarthritic knees was comparable between IL-1ß-/- and WT mice. Conclusions: MNX knees recapitulated features of OA, i.e, cartilage destruction, synovial inflammation, cell death, and joint calcification. Deficiency of IL-1α did not impact on the severity of these features, whereas deficiency of IL-1ß or of NLRP3 led to increased cartilage erosion. Our results suggest that IL-1α and IL-1ß are not key mediators in this murine OA model and may explain the inefficiency of IL-1 targeted therapies in OA.

19.
Eur J Immunol ; 47(4): 637-645, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28191643

RESUMEN

Th17 cells are often associated with autoimmunity and been shown to be increased in CD11b-/- mice. Here, we examined the role of CD11b in murine collagen-induced arthritis (CIA). C57BL/6 and CD11b-/- resistant mice were immunized with type II collagen. CD11b-/- mice developed arthritis with early onset, high incidence, and sustained severity compared with C57BL/6 mice. We observed a marked leukocyte infiltration, and histological examinations of the arthritic paws from CD11b-/- mice revealed that the cartilage was destroyed in association with strong lymphocytic infiltration. The CD11b deficiency led to enhanced Th17-cell differentiation. CD11b-/- dendritic cells (DCs) induced much stronger IL-6 production and hence Th17-cell differentiation than wild-type DCs. Treatment of CD11b-/- mice after establishment of the Treg/Th17 balance with an anti-IL-6 receptor mAb significantly suppressed the induction of Th17 cells and reduced arthritis severity. Finally, the severe phenotype of arthritis in CD11b-/- mice was rescued by adoptive transfer of CD11b+ DCs. Taken together, our results indicate that the resistance to CIA in C57BL/6 mice is regulated by CD11b via suppression of IL-6 production leading to reduced Th17-cell differentiation. Therefore, CD11b may represent a susceptibility factor for autoimmunity and could be a target for future therapy.


Asunto(s)
Artritis Experimental/inmunología , Antígeno CD11b/metabolismo , Cartílago/inmunología , Células Dendríticas/inmunología , Interleucina-6/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Anticuerpos Bloqueadores/farmacología , Antígeno CD11b/genética , Diferenciación Celular , Células Cultivadas , Colágeno Tipo II/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-6/inmunología
20.
J Immunol ; 198(5): 2063-2069, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28137891

RESUMEN

Periodic fever with aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) is a relatively common autoinflammatory condition that primarily affects children. Although tendencies were reported for this syndrome, genetic variations influencing risk and disease progression are poorly understood. In this study, we performed next-generation sequencing for 82 unrelated PFAPA patients and identified a frameshift variant in the CARD8 gene (CARD8-FS). Subsequently, we compared the frequency of CARD8-FS carriers in our PFAPA cohort (13.9%) with a healthy local population group (3.2%) and found a significant association between the CARD8-FS polymorphism and risk for PFAPA syndrome (p = 0.012; odds ratio: 4.96 [95% confidence interval, 1.33-18.47]). Moreover, CARD8-FS carriers display a distinct PFAPA phenotype that is characterized by a higher prevalence of symptoms out of flares and oral aphthosis (both p = 0.02 compared with PFAPA patients without the frameshift variant). CARD8 encodes a protein component of the NLRP3 inflammasome, which plays an important role in inflammation and contributes to the pathology of various autoinflammatory diseases. We found that the CARD8-FS variant led to a truncated CARD8 protein lacking the FIIND and CARD domains. As a result, the mutant CARD8 protein lost the ability to interact with the NOD domain of NLRP3. In summary, these results identify a new CARD8 variant associated with PFAPA and further suggest that disruption of the interaction between CARD8 and NLRP3 can regulate autoinflammation in patients.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/genética , Fiebre/genética , Mutación del Sistema de Lectura/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Proteínas de Neoplasias/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Niño , Análisis Mutacional de ADN , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inflamasomas/metabolismo , Linfadenitis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Faringitis , Polimorfismo de Nucleótido Simple , Unión Proteica/genética , Riesgo , Estomatitis Aftosa , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...