Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2834, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310153

RESUMEN

Wildlife conservation in Andean countries is a global priority because of the high levels of biodiversity and endemism. Historically, these countries have had limited resources to monitor wildlife (e.g., through genetic tools) and establish conservation programs. Focusing on the study and emblematic use of a few charismatic species has been a strategic approach to direct efforts for conservation and development planning. Consequently, the Andean bear is a flagship and umbrella species for highly biodiverse Andean countries like Ecuador. The few studies exploring the population genetics of this species have concluded that it has low genetic diversity and few units for conservation as populations appear to be well connected. However, these results might be attributed to ascertainment bias as studies have been performed with heterologous molecular markers. Here, using both mtDNA sequences and species-specific microsatellite markers, we show that Andean bears in Ecuador have population structure. Additionally, we found through the study of three Ecuadorian populations that the species might have a higher genetic diversity than we previously thought. These results could support the revision of research priorities, conservation, and planning strategies to improve connectivity for this species which occurs in crucial biodiversity hotspots.


Asunto(s)
Ursidae , Animales , Ecuador , Ursidae/genética , Genética de Población , Biodiversidad , Conservación de los Recursos Naturales , Variación Genética
2.
Nature ; 439(7073): 161-7, 2006 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-16407945

RESUMEN

As the Earth warms, many species are likely to disappear, often because of changing disease dynamics. Here we show that a recent mass extinction associated with pathogen outbreaks is tied to global warming. Seventeen years ago, in the mountains of Costa Rica, the Monteverde harlequin frog (Atelopus sp.) vanished along with the golden toad (Bufo periglenes). An estimated 67% of the 110 or so species of Atelopus, which are endemic to the American tropics, have met the same fate, and a pathogenic chytrid fungus (Batrachochytrium dendrobatidis) is implicated. Analysing the timing of losses in relation to changes in sea surface and air temperatures, we conclude with 'very high confidence' (> 99%, following the Intergovernmental Panel on Climate Change, IPCC) that large-scale warming is a key factor in the disappearances. We propose that temperatures at many highland localities are shifting towards the growth optimum of Batrachochytrium, thus encouraging outbreaks. With climate change promoting infectious disease and eroding biodiversity, the urgency of reducing greenhouse-gas concentrations is now undeniable.


Asunto(s)
Anfibios/microbiología , Anfibios/fisiología , Biodiversidad , Efecto Invernadero , Altitud , Animales , Bufonidae/microbiología , Bufonidae/fisiología , Costa Rica , Humedad , Modelos Biológicos , Dinámica Poblacional , Riesgo , Temperatura , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...