Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 72(5): 3228-35, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16672461

RESUMEN

Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals by the appropriate microbes. Due to the differences in the optimum conditions for the activity of the fungal cellulases that are required for depolymerization of cellulose to fermentable sugars and the growth and fermentation characteristics of the current industrial microbes, simultaneous saccharification and fermentation (SSF) of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity, leading to a higher-than-required cost of cellulase in SSF. We have isolated bacterial strains that grew and fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to l(+)-lactic acid at 50 degrees C and pH 5.0, conditions that are also optimal for fungal cellulase activity. Xylose was metabolized by these new isolates through the pentose-phosphate pathway. As expected for the metabolism of xylose by the pentose-phosphate pathway, [(13)C]lactate accounted for more than 90% of the total (13)C-labeled products from [(13)C]xylose. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans, although the B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. These new B. coagulans isolates have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource, for the production of fuels and chemicals.


Asunto(s)
Bacillus/clasificación , Bacillus/aislamiento & purificación , Biomasa , Glucosa/metabolismo , Ácido Láctico/metabolismo , Xilosa/metabolismo , Bacillus/genética , Bacillus/metabolismo , ADN Ribosómico/análisis , Ácidos Grasos/análisis , Fermentación , Calor , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
J Bacteriol ; 186(23): 7881-7, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15547259

RESUMEN

The PduO enzyme of Salmonella enterica is an ATP:cob(I)alamin adenosyltransferase that catalyzes the final step in the conversion of vitamin B(12) to coenzyme B(12). The primary physiological role of this enzyme is to support coenzyme B(12)-dependent 1,2-propanediol degradation, and bioinformatic analysis has indicated that it has two domains. Here the PduO adenosyltransferase was produced in Escherichia coli, solubilized from inclusion bodies, purified to apparent homogeneity, and partially characterized biochemically. The K(m) values of PduO for ATP and cob(I)alamin were 19.8 and 4.5 microM, respectively, and the enzyme V(max) was 243 nmol min(-1) mg of protein(-1). Further investigations showed that PduO was active with ATP and partially active with deoxy-ATP, but lacked measurable activity with other nucleotides. (31)P nuclear magnetic resonance established that triphosphate was a product of the PduO reaction, and kinetic studies indicated a ternary complex mechanism. A series of truncated versions of the PduO protein were produced in Escherichia coli, partially purified, and used to show that adenosyltransferase activity is associated with the N-terminal domain. The N-terminal domain was purified to near homogeneity and shown to have biochemical properties and kinetic constants similar to those of the full-length enzyme. This indicated that the C-terminal domain was not directly involved in catalysis or substrate binding and may have another role.


Asunto(s)
Adenosina Trifosfato/metabolismo , Transferasas Alquil y Aril/aislamiento & purificación , Salmonella enterica/enzimología , Adenosina Trifosfato/farmacología , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/química , Fosfatos/farmacología
3.
Appl Biochem Biotechnol ; 98-100: 327-40, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12018260

RESUMEN

The ethanologenic bacteria Escherichia coli strains KO11 and LYO1, and Klebsiella oxytoca strain P2, were investigated for their ability to metabolize furfural. Using high performance liquid chromatography and 13C-nuclear magnetic resonance spectroscopy, furfural was found to be completely biotransformed into furfuryl alcohol by each of the three strains with tryptone and yeast extract as sole carbon sources. This reduction appears to be constitutive with NAD(P)H acting as electron donor. Glucose was shown to be an effective source of reducing power. Succinate inhibited furfural reduction, indicating that flavins are unlikely participants in this process. Furfural at concentrations >10 mM decreased the rate of ethanol formation but did not affect the final yield. Insight into the biochemical nature of this furfural reduction process may help efforts to mitigate furfural toxicity during ethanol production by ethanologenic bacteria.


Asunto(s)
Escherichia coli/metabolismo , Etanol/metabolismo , Furaldehído/farmacocinética , Furanos/metabolismo , Klebsiella oxytoca/metabolismo , Xilosa/metabolismo , Biotransformación , Sistema Libre de Células , Oxidación-Reducción , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA