Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(6): 065109, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778024

RESUMEN

CHESS, chopper spectrometer examining small samples, is a planned direct geometry neutron chopper spectrometer designed to detect and analyze weak signals intrinsic to small cross sections (e.g., small mass, small magnetic moments, or neutron absorbing materials) in powders, liquids, and crystals. CHESS is optimized to enable transformative investigations of quantum materials, spin liquids, thermoelectrics, battery materials, and liquids. The broad dynamic range of the instrument is also well suited to study relaxation processes and excitations in soft and biological matter. The 15 Hz repetition rate of the Second Target Station at the Spallation Neutron Source enables the use of multiple incident energies within a single source pulse, greatly expanding the information gained in a single measurement. Furthermore, the high flux grants an enhanced capability for polarization analysis. This enables the separation of nuclear from magnetic scattering or coherent from incoherent scattering in hydrogenous materials over a large range of energy and momentum transfer. This paper presents optimizations and technical solutions to address the key requirements envisioned in the science case and the anticipated uses of this instrument.

2.
Science ; 373(6556): 797-801, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385397

RESUMEN

An unconventional superconducting state was recently discovered in uranium ditelluride (UTe2), in which spin-triplet superconductivity emerges from the paramagnetic normal state of a heavy-fermion material. The coexistence of magnetic fluctuations and superconductivity, together with the crystal structure of this material, suggests that a distinctive set of symmetries, magnetic properties, and topology underlie the superconducting state. Here, we report observations of a nonzero polar Kerr effect and of two transitions in the specific heat upon entering the superconducting state, which together suggest that the superconductivity in UTe2 is characterized by a two-component order parameter that breaks time-reversal symmetry. These data place constraints on the symmetries of the order parameter and inform the discussion on the presence of topological superconductivity in UTe2.

3.
J Phys Condens Matter ; 33(24)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33827056

RESUMEN

The question of structural disorder and its effects on magnetism is relevant to a number of spin liquid candidate materials. Although commonly thought of as a route to spin glass behaviour, here we describe a system in which the structural disorder results in long-range antiferromagnetic order due to local symmetry breaking. Nd2ScNbO7is shown to have a dispersionless gapped excitation observed in other neodymium pyrochlores belowTN= 0.37 K through polarized and inelastic neutron scattering. However the dispersing spin waves are not observed. This excited mode is shown to occur in only 14(2)% of the neodymium ions through spectroscopy and is consistent with total scattering measurements as well as the magnitude of the dynamic moment 0.26(2)µB. The remaining magnetic species order completely into the all-in all-out Ising antiferromagnetic structure. This can be seen as a result of local symmetry breaking due disordered Sc+3and Nb+5ions about theA-site. From this work, it has been established thatB-site disorder restores the dipole-like behaviour of the Nd+3ions compared to the Nd2B2O7parent series.

4.
Nat Commun ; 12(1): 171, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420023

RESUMEN

In quantum magnets, magnetic moments fluctuate heavily and are strongly entangled with each other, a fundamental distinction from classical magnetism. Here, with inelastic neutron scattering measurements, we probe the spin correlations of the honeycomb lattice quantum magnet YbCl3. A linear spin wave theory with a single Heisenberg interaction on the honeycomb lattice, including both transverse and longitudinal channels of the neutron response, reproduces all of the key features in the spectrum. In particular, we identify a Van Hove singularity, a clearly observable sharp feature within a continuum response. The demonstration of such a Van Hove singularity in a two-magnon continuum is important as a confirmation of broadly held notions of continua in quantum magnetism and additionally because analogous features in two-spinon continua could be used to distinguish quantum spin liquids from merely disordered systems. These results establish YbCl3 as a benchmark material for quantum magnetism on the honeycomb lattice.

5.
npj Quantum Inf ; 6(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-37731847

RESUMEN

The helimagnet FeP is part of a family of binary pnictide materials with the MnP-type structure, which share a nonsymmorphic crystal symmetry that preserves generic band structure characteristics through changes in elemental composition. It shows many similarities, including in its magnetic order, to isostructural CrAs and MnP, two compounds that are driven to superconductivity under applied pressure. Here we present a series of high magnetic field experiments on high-quality single crystals of FeP, showing that the resistance not only increases without saturation by up to several hundred times its zero-field value by 35 T, but that it also exhibits an anomalously linear field dependence over the entire range when the field is aligned precisely along the crystallographic c-axis. A close comparison of quantum oscillation frequencies to electronic structure calculations links this orientation to a semi-Dirac point in the band structure, which disperses linearly in a single direction in the plane perpendicular to field, a symmetry-protected feature of this entire material family. We show that the two striking features of magnetoresistance-large amplitude and linear field dependence-arise separately in this system, with the latter likely due to a combination of ordered magnetism and topological band structure.

6.
Phys Rev B ; 103(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38486881

RESUMEN

We investigate the magnetic properties of LiYbO2, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb3+ ions in LiYbO2 enters a long-range incommensurate, helical state with an ordering wave vector k=(0.384,±0.384,0) that "locks-in" to a commensurate k=(1/3,±1/3,0) phase under the application of a magnetic field. The spiral magnetic ground state of LiYbO2 can be understood in the framework of a Heisenberg J1-J2 Hamiltonian on a stretched diamond lattice, where the propagation vector of the spiral is uniquely determined by the ratio of J2/J1. The pure Heisenberg model, however, fails to account for the relative phasing between the Yb moments on the two sites of the bipartite lattice, and this detail as well as the presence of an intermediate, partially disordered, magnetic state below 1 K suggests interactions beyond the classical Heisenberg description of this material.

7.
Phys Rev Lett ; 122(18): 187201, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144900

RESUMEN

Neutron scattering measurements on the pyrochlore magnet Ce_{2}Zr_{2}O_{7} reveal an unusual crystal field splitting of its lowest J=5/2 multiplet, such that its ground-state doublet is composed of m_{J}=±3/2, giving these doublets a dipole-octupole (DO) character with local Ising anisotropy. Its magnetic susceptibility shows weak antiferromagnetic correlations with θ_{CW}=-0.4(2) K, leading to a naive expectation of an all-in, all-out ordered state at low temperatures. Instead, our low-energy inelastic neutron scattering measurements show a dynamic quantum spin ice state, with suppressed scattering near |Q|=0, and no long-range order at low temperatures. This is consistent with recent theory predicting symmetry-enriched U(1) quantum spin liquids for such DO doublets decorating the pyrochlore lattice. Finally, we show that disorder, especially oxidation of powder samples, is important in Ce_{2}Zr_{2}O_{7} and could play an important role in the low-temperature behavior of this material.

8.
Phys Rev B ; 100(14)2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34131607

RESUMEN

We report low-temperature muon spin relaxation/rotation (µSR) measurements on single crystals of the actinide superconductor UTe2. Below 5 K we observe a continuous slowing down of magnetic fluctuations that persists through the superconducting transition temperature (T c = 1.6 K), but we find no evidence of long-range or local magnetic order down to 0.025 K. The temperature dependence of the dynamic relaxation rate down to 0.4 K agrees with the self-consistent renormalization theory of spin fluctuations for a three-dimensional weak itinerant ferromagnetic metal. Our µSR measurements also indicate that the superconductivity coexists with the magnetic fluctuations.

9.
Phys Rev B ; 100(9)2019.
Artículo en Inglés | MEDLINE | ID: mdl-33553858

RESUMEN

We have measured the room-temperature phonon spectrum of Mo-stabilized γ-U. The dispersion curves show unusual softening near the H point, q = [1/2, 1/2, 1/2], which may derive from the metastability of the γ-U phase or from strong electron-phonon coupling. Near the zone center, the dispersion curves agree well with theory, though significant differences are observed away from the zone center. The experimental phonon density of states is shifted to higher energy compared to theory and high-temperature neutron scattering. The elastic constants of γ-UMo are similar to those of body-centered cubic elemental metals.

10.
J Phys Condens Matter ; 30(45): 455801, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30256218

RESUMEN

The breathing pyrochlore lattice material Ba3Yb2Zn5O11 exists in the nearly decoupled limit, in contrast to most other well-studied breathing pyrochlore compounds. As a result, it constitutes a useful platform to benchmark theoretical calculations of exchange interactions in insulating Yb3+ magnets. Here we study Ba3Yb2Zn5O11 at low temperatures in applied magnetic fields as a further probe of the physics of this model system. Experimentally, we consider the behavior of polycrystalline samples of Ba3Yb2Zn5O11 with a combination of inelastic neutron scattering and heat capacity measurements down to 75 mK and up to fields of 10 T. Consistent with previous work, inelastic neutron scattering finds a level crossing near 3 T, but no significant dispersion of the spin excitations is detected up to the highest applied fields. Refinement of the theoretical model previously determined at zero field can reproduce much of the inelastic neutron scattering spectra and specific heat data. A notable exception is a low temperature peak in the specific heat at ∼0.1 K. This may indicate the scale of interactions between tetrahedra or may reflect undetected disorder in Ba3Yb2Zn5O11.

11.
Phys Rev Lett ; 119(18): 187201, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219594

RESUMEN

We report neutron scattering measurements on Er_{2}Pt_{2}O_{7}, a new addition to the XY family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er_{2}Pt_{2}O_{7} orders into the k=0, Γ_{7} magnetic structure (the Palmer-Chalker state), at T_{N}=0.38 K. This contrasts with its sister XY pyrochlore antiferromagnets Er_{2}Ti_{2}O_{7} and Er_{2}Ge_{2}O_{7}, both of which order into Γ_{5} magnetic structures at much higher temperatures, T_{N}=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er_{2}Pt_{2}O_{7} contains a broad anomaly centered at T^{*}=1.5 K. Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below T_{N}=0.38 K, Er_{2}Pt_{2}O_{7} displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of T_{N}, is attributable to enhanced quantum fluctuations due to phase competition between the Γ_{7} and Γ_{5} states that border each other within a classically predicted phase diagram.

12.
Phys Rev Lett ; 119(4): 047201, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-29341758

RESUMEN

Inelastic neutron scattering measurements were performed to study spin dynamics in the noncentrosymmetric antiferromagnet α-Cu_{2}V_{2}O_{7}. For the first time, nonreciprocal magnons were experimentally measured in an antiferromagnet. These nonreciprocal magnons are caused by the incompatibility between anisotropic exchange and antisymmetric Dzyaloshinskii-Moriya interactions, which arise from broken symmetry, resulting in a collinear ordered state but helical spin dynamics. The nonreciprocity introduces the difference in the phase velocity of the counterrotating modes, causing the opposite spontaneous magnonic Faraday rotation of the left- and right-propagating spin waves. The breaking of spatial inversion and time reversal symmetry is revealed as a magnetic-field-induced asymmetric energy shift, which provides a test for the detailed balance relation.

13.
Nat Commun ; 7: 12912, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650796

RESUMEN

Molecular quantum magnetism involving an isolated spin state is of particular interest due to the characteristic quantum phenomena underlying spin qubits or molecular spintronics for quantum information devices, as demonstrated in magnetic metal-organic molecular systems, the so-called molecular magnets. Here we report the molecular quantum magnetism realized in an inorganic solid Ba3Yb2Zn5O11 with spin-orbit coupled pseudospin-½ Yb(3+) ions. The magnetization represents the magnetic quantum values of an isolated Yb4 tetrahedron with a total (pseudo)spin 0, 1 and 2. Inelastic neutron scattering results reveal that a large Dzyaloshinsky-Moriya interaction originating from strong spin-orbit coupling of Yb 4f is a key ingredient to explain magnetic excitations of the molecular magnet states. The Dzyaloshinsky-Moriya interaction allows a non-adiabatic quantum transition between avoided crossing energy levels, and also results in unexpected magnetic behaviours in conventional molecular magnets.

14.
Phys Rev Lett ; 111(21): 216402, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24313508

RESUMEN

By a combined angle-resolved photoemission spectroscopy and density functional theory study, we discover that the surface metallicity is polarity driven in SmB6. Two surface states, not accounted for by the bulk band structure, are reproduced by slab calculations for coexisting B6 and Sm surface terminations. Our analysis reveals that a metallic surface state stems from an unusual property, generic to the (001) termination of all hexaborides: the presence of boron 2p dangling bonds, on a polar surface. The discovery of polarity-driven surface metallicity sheds new light on the 40-year old conundrum of the low-temperature residual conductivity of SmB6, and raises a fundamental question in the field of topological Kondo insulators regarding the interplay between polarity and nontrivial topological properties.

15.
Phys Rev Lett ; 111(8): 087001, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010465

RESUMEN

Simultaneous low-temperature electrical resistivity and Hall effect measurements were performed on single-crystalline Bi2Se3 under applied pressures up to 50 GPa. As a function of pressure, superconductivity is observed to onset above 11 GPa with a transition temperature Tc and upper critical field Hc2 that both increase with pressure up to 30 GPa, where they reach maximum values of 7 K and 4 T, respectively. Upon further pressure increase, Tc remains anomalously constant up to the highest achieved pressure. Conversely, the carrier concentration increases continuously with pressure, including a tenfold increase over the pressure range where Tc remains constant. Together with a quasilinear temperature dependence of Hc2 that exceeds the orbital and Pauli limits, the anomalously stagnant pressure dependence of Tc points to an unconventional pressure-induced pairing state in Bi2Se3 that is unique among the superconducting topological insulators.

16.
Phys Rev Lett ; 110(21): 216401, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745898

RESUMEN

We study Bi(2)Se(3) by polarization-dependent angle-resolved photoemission spectroscopy and density-functional theory slab calculations. We find that the surface state Dirac fermions are characterized by a layer-dependent entangled spin-orbital texture, which becomes apparent through quantum interference effects. This explains the discrepancy between the spin polarization obtained in spin and angle-resolved photoemission spectroscopy-ranging from 20% to 85%-and the 100% value assumed in phenomenological models. It also suggests a way to probe the intrinsic spin texture of topological insulators, and to continuously manipulate the spin polarization of photoelectrons and photocurrents all the way from 0 to ±100% by an appropriate choice of photon energy, linear polarization, and angle of incidence.

17.
J Phys Condens Matter ; 24(3): 035602, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22183616

RESUMEN

We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 toward increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance Δρ(xx) that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3.

18.
Phys Rev Lett ; 107(18): 186405, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22107654

RESUMEN

The electronic structure of Bi(2)Se(3) is studied by angle-resolved photoemission and density functional theory. We show that the instability of the surface electronic properties, observed even in ultrahigh-vacuum conditions, can be overcome via in situ potassium deposition. In addition to accurately setting the carrier concentration, new Rashba-like spin-polarized states are induced, with a tunable, reversible, and highly stable spin splitting. Ab initio slab calculations reveal that these Rashba states are derived from 5-quintuple-layer quantum-well states. While the K-induced potential gradient enhances the spin splitting, this may be present on pristine surfaces due to the symmetry breaking of the vacuum-solid interface.

19.
Nature ; 476(7358): 73-5, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21814279

RESUMEN

Although it is generally accepted that superconductivity is unconventional in the high-transition-temperature copper oxides, the relative importance of phenomena such as spin and charge (stripe) order, superconductivity fluctuations, proximity to a Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate. In electron-doped copper oxides, the absence of an anomalous pseudogap phase in the underdoped region of the phase diagram and weaker electron correlations suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic spin fluctuations are the dominant feature. Here we report a study of magnetotransport in thin films of the electron-doped copper oxide La(2 - x)Ce(x)CuO(4). We show that a scattering rate that is linearly dependent on temperature--a key feature of the anomalous normal state properties of the copper oxides--is correlated with the electron pairing. We also show that an envelope of such scattering surrounds the superconducting phase, surviving to zero temperature when superconductivity is suppressed by magnetic fields. Comparison with similar behaviour found in organic superconductors strongly suggests that the linear dependence on temperature of the resistivity in the electron-doped copper oxides is caused by spin-fluctuation scattering.

20.
J Phys Condens Matter ; 22(7): 072204, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21386376

RESUMEN

We report superconductivity in single crystals of the new iron-pnictide system BaFe(1.90)Pt(0.10)As(2) grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with a structural transition at 139 K present in BaFe(2)As(2) is completely suppressed by substitution of 5% Fe with Pt and superconductivity is induced at a critical temperature T(c) = 23 K. Full diamagnetic screening in the magnetic susceptibility and a jump in the specific heat at T(c) confirm the bulk nature of the superconducting phase. All properties of the superconducting state-including the transition temperature T(c), the lower critical field H(c1) = 200 mT, the upper critical field H(c2)≈ 65 T, and the slope ∂H(c2)/∂T-are comparable in value to those found in other transition metal-substituted BaFe(2)As(2) series, indicating the robust nature of superconductivity induced by substitution of Group VIII elements.


Asunto(s)
Compuestos de Bario/química , Complejos de Coordinación/química , Conductividad Eléctrica , Compuestos Ferrosos/química , Platino (Metal)/química , Cristalización , Magnetismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...