Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 876: 162778, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906039

RESUMEN

Ocean warming and marine heatwaves significantly alter environmental conditions in marine and estuarine environments. Despite their potential global importance for nutrient security and human health, it is not well understood how thermal impacts could alter the nutritional quality of harvested marine resources. We tested whether short-term experimental exposure to seasonal temperatures, projected ocean-warming temperatures, and marine heatwaves affected the nutritional quality of the eastern school prawn (Metapenaeus macleayi). In addition, we tested whether nutritional quality was affected by the duration of exposure to warm temperatures. We show the nutritional quality of M. macleayi is likely to be resilient to short- (28 d), but not longer-term (56 d) exposure to warming temperatures. The proximate, fatty acid and metabolite compositions of M. macleayi were unchanged after 28 d exposure to simulated ocean warming and marine heatwaves. The ocean-warming scenario did, however, show potential for elevated sulphur, iron and silver levels after 28 d. Decreasing saturation of fatty acids in M. macleayi after 28 d exposure to cooler temperatures indicates homeoviscous adaptation to seasonal changes. We found that 11 % of measured response variables were significantly different between 28 and 56 d when exposed to the same treatment, indicating the duration of exposure time and time of sampling are critical when measuring this species' nutritional response. Further, we found that future acute warming events could reduce harvestable biomass, despite survivors retaining their nutritional quality. Developing a combined knowledge of the variability in seafood nutrient content with shifts in the availability of harvested seafood is crucial for understanding seafood-derived nutrient security in a changing climate.


Asunto(s)
Penaeidae , Agua de Mar , Animales , Humanos , Temperatura , Estaciones del Año , Valor Nutritivo , Ácidos Grasos , Océanos y Mares , Instituciones Académicas , Cambio Climático , Ecosistema , Calentamiento Global
2.
Mar Pollut Bull ; 180: 113675, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35642798

RESUMEN

Coastal agricultural practices are often located in catchments upstream of ecologically important aquatic systems. Here, we investigate the occurrence of pesticides in a coastal creek flowing into a habitat-protected area within the Solitary Islands Marine Park, Australia. Water samples were collected from six sites along a creek transect during three sampling periods. Samples were analysed for 171 pesticide analytes, including organochlorines, organophosphates, herbicides, and fungicides. Five insecticides, two herbicides, and two fungicides were detected. The neonicotinoid imidacloprid was detected at 5 out of 6 sites, with concentrations reaching 294 µg L-1, the highest yet detected in Australian waterways. The organophosphate insecticide dimethoate was detected at 4 sites, which occurred at the 2nd highest detected concentration in the study (12.8 µg L-1). The presence of these pesticides in the aquatic environment downstream of horticulture in this and other regions may have serious implications for stream biota and ecologically important marine ecosystems.


Asunto(s)
Fungicidas Industriales , Herbicidas , Insecticidas , Plaguicidas , Contaminantes Químicos del Agua , Australia , Ecosistema , Monitoreo del Ambiente , Fungicidas Industriales/análisis , Herbicidas/análisis , Insecticidas/análisis , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis
3.
Aquat Toxicol ; 242: 106050, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34915355

RESUMEN

Shrimp aquaculture is a valuable source of quality seafood that can be impacted by exposure to insecticides, such as imidacloprid. Here, adult black tiger shrimp (Penaeus monodon) were used to evaluate the activity of acetylcholinesterase (AChE), catalase (CAT), and glutathione S-transferase (GST) in abdominal, head, gill, and hepatopancreas tissue as biomarkers for imidacloprid exposure. Adult P. monodon were continuously exposed to imidacloprid in water (5 µgL-1 and 30 µgL-1) or feed (12.5 µg g-1 and 75 µg g-1) for either 4 or 21 days. The imidacloprid concentration in shrimp tissues was determined using liquid chromatography-mass spectrometry after QuEChER extraction, and AChE, CAT, and GST activities were estimated by spectrophotometric assay. Imidacloprid exposure in shrimp elevated the activity of biomarkers, and the enzymatic activity was positively correlated to tissue imidacloprid accumulation, although the effects varied in a tissue-, dose- and time-dependent manner. AChE activity was correlated to imidacloprid concentration in the abdominal tissue of shrimp and was likely related to neural tissue distribution, while the activity of CAT and GST confirmed a generalised anti-oxidant stress response. AChE, CAT, and GST were valuable biomarkers for assessing shrimp response to imidacloprid exposure from dietary or water sources, and the abdominal tissue was the most reliable for exposure assessment. An elevated response in each of these biomarkers during routine monitoring could provide an early warning of shrimp stress, suggesting that investigating potential contamination by neonicotinoid pesticides would be worthwhile.


Asunto(s)
Neonicotinoides , Nitrocompuestos , Penaeidae , Contaminantes Químicos del Agua , Acetilcolinesterasa , Animales , Biomarcadores , Catalasa , Exposición a Riesgos Ambientales , Glutatión Transferasa , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Penaeidae/efectos de los fármacos , Penaeidae/enzimología , Contaminantes Químicos del Agua/toxicidad
4.
Chemosphere ; 275: 129918, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33639551

RESUMEN

Neonicotinoid pesticides have been detected in aquatic habitats, and exposure may impact the health of aquatic organisms such as commercially-important crustaceans. Black Tiger Shrimp (Penaeus monodon) is a broadly distributed and high-value shrimp species that rely on estuaries for early life stages. Differences in the acute toxicity and accumulation of different neonicotinoids in tissues of commercial crustaceans have not been widely investigated. This study compared acute toxicity, uptake, and depuration of four neonicotinoids; thiamethoxam, clothianidin, acetamiprid, and imidacloprid, on juvenile P. monodon and their effects on enzyme biomarkers. Acute toxicity (48-h LC50) was determined as 190 µg L-1 (clothianidin), 390 µg L-1 (thiamethoxam), 408 µg L-1 (imidacloprid), and >500 µg L-1(acetamiprid). To assess uptake and elimination, shrimp were exposed to a fixed 5 µg L-1 water concentration for eight days (uptake) or four days of exposure followed by four days of depuration (elimination). Neonicotinoid water and tissue concentrations were measured by liquid chromatography-mass spectrometry following solid-phase extraction and QuEChER extraction respectively. The lower toxicity associated with acetamiprid could be associated with lower accumulation in the tissue, with concentrations remaining below 0.01 µg g-1. The activity of acetylcholinesterase, catalase and glutathione S-transferase in abdominal tissues was determined by spectrophotometric assay, with significant sublethal effects detected for all four neonicotinoids. Depuration reduced the tissue concentration of the active ingredient and reduced the activity of oxidative stress enzymes. Given acetamiprid showed no acute toxicity and reduced impact on the enzymatic activity of P. monodon, it may be an appropriate alternative to other neonicotinoids in shrimp producing areas.


Asunto(s)
Insecticidas , Penaeidae , Contaminantes Químicos del Agua , Animales , Insecticidas/toxicidad , Neonicotinoides/análisis , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Tiametoxam , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Mar Environ Res ; 159: 105009, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32662439

RESUMEN

Globally, millions of people depend on nutritional benefits from seafood consumption, but few studies have tested for effects of near-future climate change on seafood health and quality. Quantitative assessments of the interactive effects of climate change and discarding of fisheries resources are also lacking, despite ~10% of global catches being discarded annually. Utilising the harvested blue swimmer crab (Portunus armatus), we experimentally tested the effects of near-future temperature and salinity treatments under simulated capture and discarding on a suite of health and nutritional quality parameters. We show that nutritional quality (protein, lipids, moisture content and fatty acid composition) was not significantly affected by near-future climate change. Further, stress biomarkers (catalase and glutathione S-transferases activity and glycogen content) did not differ significantly among treatments following simulated capture and discarding. These results support the inherent resilience of P. armatus to short-term environmental change, and indicate that negative physiological responses associated with discarding may not be exacerbated in a future ocean. We suggest that harvested estuarine species, and thus the industries and food security they underpin, may be resilient to the future effects of climate change due to their adaptation to naturally variable habitats.


Asunto(s)
Braquiuros , Cambio Climático , Animales , Ecosistema , Explotaciones Pesqueras , Salinidad
6.
Sci Total Environ ; 742: 140449, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32640399

RESUMEN

Pesticides are frequently employed to enhance agricultural production. Neonicotinoid pesticides (including imidacloprid) are often used to control sucking insects but have been shown to impact aquatic crustaceans. Imidacloprid is highly water soluble and has been detected in estuaries where it has been applied in adjacent catchments. We examined the impact of environmentally relevant concentrations of imidacloprid on Eastern School Prawn (Metapenaeus macleayi), an important exploited crustacean in Australia. Prawns were held for 8 days in estuarine water containing 0-4 µg L-1 of imidacloprid to assess potential lethal and non-lethal impacts. There was a non-linear relationship between exposure concentration and tissue concentration, with tissue concentrations peaking at exposures of 1.4 µg L-1 (1.16 to 1.64 µg L-1, 90% C.I.). There was no evidence for direct mortality associated with imidacloprid exposure, but exposure did influence the organism metabolome which likely reflects alterations in metabolic homeostasis, such as changes in the fatty acid composition which indicate a shift in lipid homeostasis. There was a positive correlation between exposure concentration and moulting frequency. Shedding of the exoskeleton may represent a mechanism through which prawns can expel the contaminant from their bodies. These results indicate that prawns experience several different sub-lethal effects when exposed to these pesticides, which may have implications for the health of populations.


Asunto(s)
Insecticidas , Penaeidae , Plaguicidas , Contaminantes Químicos del Agua/análisis , Animales , Australia , Neonicotinoides , Nitrocompuestos
7.
Ecotoxicol Environ Saf ; 198: 110682, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387844

RESUMEN

Neonicotinoid insecticides, including imidacloprid, are increasingly being used to control insect pests in agricultural and urban areas, and are often detected in aquatic environments. The effects of neonicotinoids on non-target insects have been investigated with respect to behavioural, biochemical, physiological and population-level responses, but information of their effects on crustaceans is limited. This study investigated the adverse effects of both acute and chronic exposure to sublethal concentrations of imidacloprid on the nutritional quality of adult Black Tiger Shrimp (Penaeus monodon). Shrimp were continually exposed to imidacloprid in water (5 µg L-1 and 30 µg L-1), or through their food (12.5 µg g-1 and 75 µg g-1), for the entire exposure period. Imidacloprid concentrations in water and residues in tissues were quantified using liquid chromatography-mass spectrometry after solid-phase extraction and QuEChER extraction respectively. Within 4 days, shrimp accumulated imidacloprid at up to 0.350 µg imidacloprid per g body weight from water and food exposure. Chronic exposure resulted in a significant decrease in body weight and total lipid content. Fatty acid composition in exposed shrimp was modified relative to controls. Overall, these results demonstrate that neonicotinoid exposure could lead to nutritional deficiency, which has implications for the productivity and food quality of shrimp.


Asunto(s)
Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Penaeidae/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Insecticidas/análisis , Neonicotinoides/análisis , Valor Nutritivo , Penaeidae/efectos de los fármacos , Extracción en Fase Sólida , Contaminantes Químicos del Agua/análisis
8.
Mar Environ Res ; 151: 104769, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31431393

RESUMEN

Marine heatwaves (MHW) are predicted to occur with increased frequency, duration and intensity in a changing climate, with pervasive ecological and socioeconomic consequences. While there is a growing understanding of the ecological impacts of warming and marine heatwaves, much less is known about how they influence the underlying physiology and health of species, and the nutritional properties of tissue. We evaluated the effects of different heatwave scenarios and ocean warming on the nutritional properties and immune health of the harvested gastropod Turbo militaris. Neither heatwave scenarios nor elevated temperatures had significant impacts on morphometrics, proximate composition or inorganic content of T. militaris. However, an increased moisture content and non-significant trends, such as elevated amount of lipids, and an increased number of hemocytes in the blood of T. militaris in the heatwave treatments were suggestive of mild stress. Overall, our study suggests that T. militaris is resilient to marine heatwaves and warming, although delayed, additive or synergistic stress responses cannot be ruled out. Understanding the possible effects of ocean warming and heatwaves on fisheries species could improve management actions to avoid species impacts, socioeconomic losses and negative effects to ecosystem service provision in a changing climate.


Asunto(s)
Gastrópodos , Rayos Infrarrojos , Animales , Cambio Climático , Ecosistema , Explotaciones Pesqueras , Dinámica Poblacional
9.
Chemosphere ; 217: 329-348, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30419387

RESUMEN

Widespread agricultural use of systemic neonicotinoid insecticides has resulted in the unintended contamination of aquatic environments. Water quality surveys regularly detect neonicotinoids in rivers and waterways at concentrations that could impact aquaculture stock. The toxicity of neonicotinoids to non-target aquatic insect and crustacean species has been recognised, however, there is a paucity of information on their effect on commercial shrimp aquaculture. Here, we show that commercially produced shrimp are likely to be exposed to dietary, sediment and waterborne sources of neonicotinoids; increasing the risks of disease and accidental human consumption. This review examines indicators of sublethal neonicotinoid exposure in non-target species and analyses their potential usefulness for ecotoxicology assessment in shrimp. The identification of rapid, reliable responses to neonicotinoid exposure in shrimp will result in better decision making in aquaculture management.


Asunto(s)
Acuicultura/métodos , Neonicotinoides/toxicidad , Penaeidae/efectos de los fármacos , Animales , Crustáceos/efectos de los fármacos , Humanos , Insecticidas/toxicidad , Nitrocompuestos/toxicidad , Riesgo , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
10.
Glob Chang Biol ; 25(2): 699-707, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30414338

RESUMEN

Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near-future ocean warming and acidification on the growth, health and seafood quality of a recreationally and commercially important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near-future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro- and micronutrients, moisture, ash and total N). Yellowfin bream appear to be highly resilient to predicted near-future ocean climate change, which might be facilitated by their wide spatio-temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near-future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats and imply their sustainable and viable fisheries into the future. We contend that widely distributed species that span large geographic areas and habitats can be "climate winners" by being resilient to the negative direct impacts of near-future oceanic and estuarine climate change.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Calidad de los Alimentos , Perciformes/fisiología , Alimentos Marinos/análisis , Animales , Calentamiento Global , Calor , Concentración de Iones de Hidrógeno , Nueva Gales del Sur , Perciformes/crecimiento & desarrollo , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...