Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(1): 211-220, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154121

RESUMEN

Surfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates. The tail length of sodium alkyl ethoxy sulfates was related to their ability to form wormlike micelles in electrolyte solutions, indicating that a tail length greater than 10 carbons is required to form wormlike micelles in NaCl solutions, with the decyl homologue unable to form elongated micelles and maintaining a low viscosity even at 20 wt % surfactant loading with 4 wt % NaCl present. For these systems, the incorporation of a disperse ethoxylate linker does not enable shorter chain surfactants to elongate into wormlike micelles for single-component systems; however, it could increase the interactions between surfactants in mixed surfactant systems. For synergy in surfactant mixing, the nonideal regular solution theory is used to study the sulfate/betaine mixtures. Tail mismatch appears to drive lower critical micelle concentrations, although tail matching improves synergy with larger relative reductions in critical micelle concentrations and greater micelle elongation, as seen by both tensiometric and scattering measurements.

2.
Langmuir ; 38(24): 7522-7534, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35678153

RESUMEN

Azobenzene-containing surfactants (azo-surfactants) have garnered significant attention for their use in generating photoresponsive foams, interfaces, and colloidal systems. The photoresponsive behavior of azo-surfactants is driven by the conformational and electronic changes that occur when the azobenzene chromophore undergoes light-induced trans ⇌ cis isomerization. Effective design of surfactants and targeting of their properties requires a robust understanding of how the azobenzene functionality interacts with surfactant structure and influences overall surfactant behavior. Herein, a library of tail substituted azo-surfactants were synthesized and studied to better understand how surfactant structure can be tailored to exploit the azobenzene photoswitch. This work shows that tail group structure (length and branching) has a profound influence on the critical micelle concentration of azo-surfactants and their properties once adsorbed to an air-water interface. Neutron scattering studies revealed the unique role that intermolecular π-π azobenzene interactions have on the self-assembly of azo-surfactants, and how the influence of these interactions can be tuned using tail group structure to target specific aqueous aggregate morphologies.

3.
J Colloid Interface Sci ; 607(Pt 1): 836-847, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34536938

RESUMEN

Perfluorocarbon emulsion droplets are hybrid colloidal materials with vast applications, ranging from imaging to drug delivery, due to their controllable phase transition into microbubbles via heat application or acoustic droplet vapourisation. The current work highlights the application of small- and ultra-small-angle neutron scattering (SANS and USANS), in combination with contrast variation techniques, in observing the in situ phase transition of polydopamine-shelled, perfluorocarbon (PDA/PFC) emulsion droplets with controlled polydispersity into microbubbles upon heating. We correlate these measurements with optical and transmission electron microscopy imaging, dynamic light scattering, and thermogravimetric analysis to characterise these emulsions, and observe their phase transition into microbubbles. Results show that the phase transition of PDA/PFC droplets with perfluorohexane (PFH), perfluoropentane (PFP), and PFH-PFP mixtures occur at temperatures that are around 30-40 °C higher than the boiling points of pure liquid PFCs, and this is influenced by the specific PFC compositions (perfluorohexane, perfluoropentane, and mixtures of these PFCs). Analysis and model fitting of neutron scattering data allowed us to monitor droplet size distributions at different temperatures, giving valuable insights into the transformation of these polydisperse, emulsion droplet systems.


Asunto(s)
Fluorocarburos , Microburbujas , Emulsiones , Calor , Indoles , Neutrones , Polímeros
4.
Adv Colloid Interface Sci ; 297: 102528, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34655932

RESUMEN

Betaines are a key class of zwitterionic surfactant that exhibit particularly favorable properties, making them indispensable in modern formulation. Due to their composition, betaines are readily biodegradable, mild on the skin and exhibit some antimicrobial activity. Vital to their function, these surfactants self-assemble into diverse micellar geometries, some of which contribute to increased solution viscosity, and their surface activity results in strong detergency and foaming. As such, their behavior has been exploited in various applications from personal care (including shampoos and liquid soaps) to specific industrial fields (such as enhanced oil recovery). This review aims to inform the reader of the diverse range of different betaine and betaine-like surfactants that have been actively researched over the past three decades. Synthesis as well as both chemical and physical characterization of betaine surfactants are discussed, including small-angle scattering studies that indicate self-assembly structures and rheological data that demonstrates texture and flow. Stimulus responsive systems and exotic betaine analogs with enhanced functionality are also covered. Crucially, the connection between surfactant molecular architecture and function are highlighted, exemplifying precisely why zwitterionic betaine and related surfactants are so uniquely functional.

5.
J Colloid Interface Sci ; 594: 669-680, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33780770

RESUMEN

HYPOTHESIS: Morphology of surfactant self-assemblies are governed by the intermolecular interactions and packing constraints of the constituent molecules. Therefore, rational design of surfactant structure should allow targeting of the specific self-assembly modes, such as wormlike micelles (WLMs). By inclusion of an appropriate photo-responsive functionality to a surfactant molecule, light-based control of formulation properties without the need for additives can be achieved. EXPERIMENTS: A novel azobenzene-containing surfactant was synthesised with the intention of producing photo-responsive wormlike micelles. Aggregation of the molecule in its cis and trans isomers, and its concomitant flow properties, were characterised using UV-vis spectroscopy, small-angle neutron scattering, and rheological measurements. Finally, the fluids capacity for mediating particle diffusion was assessed using dynamic light scattering. FINDINGS: The trans isomer of the novel azo-surfactant was found to form a viscoelastic WLM network, which transitioned to inviscid ellipsoidal aggregates upon photo-switching to the cis isomer. This was accompanied by changes in zero-shear viscosity up to 16,000×. UV-vis spectroscopic and rheo-SANS analysis revealed π-π interactions of the trans azobenzene chromophore within the micelles, influencing aggregate structure and contributing to micellar rigidity. Particles dispersed in a 1 wt% surfactant solution showed a fivefold increase in apparent diffusion coefficient after UV-irradiation of the mixture.

6.
Phys Chem Chem Phys ; 22(7): 4086-4095, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32031185

RESUMEN

Light-responsive binary (azobenzene + solvent) lyotropic liquid crystals (LCs) were investigated by structural modification of simple azobenzene molecules. Three benzoic acid-containing azobenzene molecules 4-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO1), 3-(4-(hydroxyphenyl)diazenyl)benzoic acid (AZO2) and 5-(4-(hydroxyphenyl)diazenyl)isophthalic acid (AZO3) were produced with various amide substitutions to produce tectons with a variety of hydrophobicity, size and branching. The LC mesophases formed by binary (azobenzene + solvent) systems with low volatility solvents dimethylsulfoxide (DMSO) and N,N-dimethylformamide (DMF) as well as the protic ionic liquids ethylammonium formate (EAF) and propylammonium formate (PAF), were investigated using a combination of small-angle X-ray and neutron scattering (SAXS and SANS) as well as polarising light microscopy (PLM). Increasing alkyl group length was found to have a strong influence on LC phase spacing, and changes in the position of substitution on the benzene ring influenced the preferred curvature of phases. UV-induced trans to cis isomerization of the samples was shown to influence ordering and optical birefringence, indicating potential applications in optical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...