Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 5(21): 4515-4520, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34587228

RESUMEN

Recurrent disease remains the principal cause for treatment failure in acute myeloid leukemia (AML) across age groups. Reliable biomarkers of AML relapse risk and disease burden have been problematic, as symptoms appear late and current monitoring relies on invasive and cost-ineffective serial bone marrow (BM) surveillance. In this report, we discover a set of unique microRNA (miRNA) that circulates in AML-derived vesicles in the peripheral blood ahead of the general dissemination of leukemic blasts and symptomatic BM failure. Next-generation sequencing of extracellular vesicle-contained small RNA in 12 AML patients and 12 controls allowed us to identify a panel of differentially incorporated miRNA. Proof-of-concept studies using a murine model and patient-derived xenografts demonstrate the feasibility of developing miR-1246, as a potential minimally invasive AML biomarker.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Animales , Biomarcadores , Médula Ósea , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Ratones , MicroARNs/genética
2.
Restor Neurol Neurosci ; 39(5): 329-338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34542046

RESUMEN

BACKGROUND/OBJECTIVE: Peripheral-nerve blocks (PNBs) using continuous-infusion of local anesthetics are used to provide perioperative analgesia. Yet little research exists to characterize the histopathological effects of continuous long-duration PNBs. Herein we test the hypothesis that continuous peri-neural bupivacaine infusion (3-day vs. 7-day infusion) contributes to histologic injury in a duration-dependent manner using an in vivo model of rat sciatic nerves. METHODS: We placed indwelling catheters in 22 rats for infusion with low-dose (0.5mg/kg/hr) bupivacaine or normal saline proximal to the right sciatic nerves for 3 or 7 consecutive days. Hind-limb analgesia was measured using Von-Frey nociceptive testing. At infusion end, rats were sacrificed, bilateral nerves were sectioned and stained with hematoxylin and eosin and CD68 for evaluation of inflammatory response, and eriochrome to assess damage to myelin. RESULTS: Animals receiving continuous infusion of bupivacaine maintained analgesia as demonstrated by significant decrease (50% on average) in nociceptive response in bupivacaine-infused limbs across time points. Both 7-day saline and bupivacaine-infused sciatic nerves showed significantly-increased inflammation by H&E staining compared to untreated native nerve controls (P = 0.0001, P < 0.0001). Extent of inflammation did not vary significantly based on infusate (7-day saline vs. 7-day bupivacaine P > 0.99) or duration (3-day bupivacaine vs 7-day bupivacaine P > 0.99). No significant change in sciatic nerve myelin was found in bupivacaine-infused animals compared to saline-infused controls, regardless of duration. CONCLUSIONS: Long-duration (7-day) bupivacaine infusion provided durable post-operative analgesia, yet contributed to equivalent neural inflammation as short duration (3-day) infusion of bupivacaine or saline with no evidence of demyelination.


Asunto(s)
Bupivacaína , Bloqueo Nervioso , Animales , Axones , Bupivacaína/farmacología , Vaina de Mielina , Ratas , Ratas Sprague-Dawley , Nervio Ciático/patología , Nervio Ciático/fisiología
3.
Nat Commun ; 12(1): 2057, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824339

RESUMEN

Lipocalin 2 (LCN2) was recently identified as an endogenous ligand of the type 4 melanocortin receptor (MC4R), a critical regulator of appetite. However, it remains unknown if this molecule influences appetite during cancer cachexia, a devastating clinical entity characterized by decreased nutrition and progressive wasting. We demonstrate that LCN2 is robustly upregulated in murine models of pancreatic cancer, its expression is associated with reduced food consumption, and Lcn2 deletion is protective from cachexia-anorexia. Consistent with LCN2's proposed MC4R-dependent role in cancer-induced anorexia, pharmacologic MC4R antagonism mitigates cachexia-anorexia, while restoration of Lcn2 expression in the bone marrow is sufficient in restoring the anorexia feature of cachexia. Finally, we observe that LCN2 levels correlate with fat and lean mass wasting and is associated with increased mortality in patients with pancreatic cancer. Taken together, these findings implicate LCN2 as a pathologic mediator of appetite suppression during pancreatic cancer cachexia.


Asunto(s)
Apetito , Caquexia/complicaciones , Lipocalina 2/metabolismo , Neoplasias Pancreáticas/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anorexia/sangre , Anorexia/complicaciones , Barrera Hematoencefálica/patología , Médula Ósea/patología , Caquexia/sangre , Línea Celular Tumoral , Modelos Animales de Enfermedad , Conducta Alimentaria , Femenino , Eliminación de Gen , Humanos , Lipocalina 2/sangre , Masculino , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Músculos/patología , Neutrófilos/patología , Tamaño de los Órganos , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genética , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Regulación hacia Arriba
4.
Front Oncol ; 10: 90, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117744

RESUMEN

Extracellular vesicle (EV) trafficking provides for a constitutive mode of cell-cell communication within tissues and between organ systems. Different EV subtypes have been identified that transfer regulatory molecules between cells, influencing gene expression, and altering cellular phenotypes. Evidence from a range of studies suggests that EV trafficking enhances cell survival and resistance to chemotherapy in solid tumors. In acute myeloid leukemia (AML), EVs contribute to the dynamic crosstalk between AML cells, hematopoietic elements and stromal cells and promote adaptation of compartmental bone marrow (BM) function through transport of protein, RNA, and DNA. Careful analysis of leukemia cell EV content and phenotypic outcomes provide evidence that vesicles are implicated in transferring several known key mediators of chemoresistance, including miR-155, IL-8, and BMP-2. Here, we review the current understanding of how EVs exert their influence in the AML niche, and identify research opportunities to improve outcomes for relapsed or refractory AML patients.

5.
Oncotarget ; 10(41): 4080-4082, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31289607
6.
EMBO Rep ; 20(7): e47546, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267709

RESUMEN

Progressive remodeling of the bone marrow microenvironment is recognized as an integral aspect of leukemogenesis. Expanding acute myeloid leukemia (AML) clones not only alter stroma composition, but also actively constrain hematopoiesis, representing a significant source of patient morbidity and mortality. Recent studies revealed the surprising resistance of long-term hematopoietic stem cells (LT-HSC) to elimination from the leukemic niche. Here, we examine the fate and function of residual LT-HSC in the BM of murine xenografts with emphasis on the role of AML-derived extracellular vesicles (EV). AML-EV rapidly enter HSC, and their trafficking elicits protein synthesis suppression and LT-HSC quiescence. Mechanistically, AML-EV transfer a panel of miRNA, including miR-1246, that target the mTOR subunit Raptor, causing ribosomal protein S6 hypo-phosphorylation, which in turn impairs protein synthesis in LT-HSC. While HSC functionally recover from quiescence upon transplantation to an AML-naive environment, they maintain relative gains in repopulation capacity. These phenotypic changes are accompanied by DNA double-strand breaks and evidence of a sustained DNA-damage response. In sum, AML-EV contribute to niche-dependent, reversible quiescence and elicit persisting DNA damage in LT-HSC.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Nicho de Células Madre , Animales , Línea Celular Tumoral , Células Cultivadas , Roturas del ADN de Doble Cadena , Femenino , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Proteína S6 Ribosómica/genética
7.
Leukemia ; 33(4): 918-930, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30206307

RESUMEN

Successive adaptation of the bone marrow (BM) from homeostatic hematopoietic microenvironment to a self-reinforcing niche is an integral aspect of leukemogenesis. Yet, the cellular mechanisms underlying these functional alterations remain to be defined. Here, we found that AML incursion precipitates compartmental endoplasmic reticulum (ER) stress and an unfolded protein response (UPR) in both leukemia and stromal cells. We observed that extracellular vesicles (EV) transmit ER stress in vivo from the AML xenograft to BM stroma, whereby the upregulation of core UPR components drives subsequent osteolineage differentiation of mesenchymal stem cells (MSC). Finally, we show that the underlying mechanism involves quantitative incorporation and cell-cell transfer of Bone Morphogenic Protein 2 (BMP2), a potent osteogenic signal, by AML-EVs. Corroborative studies in AML patient samples support the translational relevance of AML-EVs as a platform for BMP trafficking and source of compartmental crosstalk. Transmissible ER stress was previously identified as a source of chemoresistance in solid tumor models, and this work reveals a role in remodeling the BM niche in AML.


Asunto(s)
Médula Ósea/patología , Diferenciación Celular , Estrés del Retículo Endoplásmico , Vesículas Extracelulares/patología , Leucemia Mieloide Aguda/patología , Células Madre Mesenquimatosas/patología , Osteogénesis , Animales , Médula Ósea/metabolismo , Proliferación Celular , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nicho de Células Madre , Microambiente Tumoral , Respuesta de Proteína Desplegada
8.
Haematologica ; 103(3): 382-394, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29439185

RESUMEN

Self-renewal and differentiation are defining characteristics of hematopoietic stem and progenitor cells, and their balanced regulation is central to lifelong function of both blood and immune systems. In addition to cell-intrinsic programs, hematopoietic stem and progenitor cell fate decisions are subject to extrinsic cues from within the bone marrow microenvironment and systemically. Yet, many of the paracrine and endocrine mediators that shape hematopoietic function remain to be discovered. Extracellular vesicles serve as evolutionarily conserved, constitutive regulators of cell and tissue homeostasis, with several recent reports supporting a role for extracellular vesicles in the regulation of hematopoiesis. We review the physiological and pathophysiological effects that extracellular vesicles have on bone marrow compartmental function while highlighting progress in understanding vesicle biogenesis, cargo incorporation, differential uptake, and downstream effects of vesicle internalization. This review also touches on the role of extracellular vesicles in hematopoietic stem and progenitor cell fate regulation and recent advances in therapeutic and diagnostic applications of extracellular vesicles in hematologic disorders.


Asunto(s)
Vesículas Extracelulares/fisiología , Hematopoyesis , Células Madre Hematopoyéticas , Médula Ósea , Enfermedades Hematológicas , Humanos
9.
Nucleic Acids Res ; 43(4): 2008-21, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25653159

RESUMEN

During skeletal muscle differentiation, the activation of some tissue-specific genes occurs immediately while others are delayed. The molecular basis controlling temporal gene regulation is poorly understood. We show that the regulatory sequences, but not other regions of genes expressed at late times of myogenesis, are in close physical proximity in differentiating embryonic tissue and in differentiating culture cells, despite these genes being located on different chromosomes. Formation of these inter-chromosomal interactions requires the lineage-determinant MyoD and functional Brg1, the ATPase subunit of SWI/SNF chromatin remodeling enzymes. Ectopic expression of myogenin and a specific Mef2 isoform induced myogenic differentiation without activating endogenous MyoD expression. Under these conditions, the regulatory sequences of late gene loci were not in close proximity, and these genes were prematurely activated. The data indicate that the spatial organization of late genes contributes to temporal regulation of myogenic transcription by restricting late gene expression during the early stages of myogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Elementos Reguladores de la Transcripción , Animales , Línea Celular , Ensamble y Desensamble de Cromatina , Cromosomas de los Mamíferos , ADN Helicasas/fisiología , Histona Desacetilasa 2/fisiología , Ratones , Músculo Esquelético/metabolismo , Proteína MioD/fisiología , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Factores de Transcripción/fisiología
10.
J Libr Adm ; 52(8): 754-769, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23585706

RESUMEN

This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed.

11.
J Cell Biochem ; 107(4): 609-21, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19449340

RESUMEN

The complex nuclear structure of somatic cells is important to epigenomic regulation, yet little is known about nuclear organization of human embryonic stem cells (hESC). Here we surveyed several nuclear structures in pluripotent and transitioning hESC. Observations of centromeres, telomeres, SC35 speckles, Cajal Bodies, lamin A/C and emerin, nuclear shape and size demonstrate a very different "nuclear landscape" in hESC. This landscape is remodeled during a brief transitional window, concomitant with or just prior to differentiation onset. Notably, hESC initially contain abundant signal for spliceosome assembly factor, SC35, but lack discrete SC35 domains; these form as cells begin to specialize, likely reflecting cell-type specific genomic organization. Concomitantly, nuclear size increases and shape changes as lamin A/C and emerin incorporate into the lamina. During this brief window, hESC exhibit dramatically different PML-defined structures, which in somatic cells are linked to gene regulation and cancer. Unlike the numerous, spherical somatic PML bodies, hES cells often display approximately 1-3 large PML structures of two morphological types: long linear "rods" or elaborate "rosettes", which lack substantial SUMO-1, Daxx, and Sp100. These occur primarily between Day 0-2 of differentiation and become rare thereafter. PML rods may be "taut" between other structures, such as centromeres, but clearly show some relationship with the lamina, where PML often abuts or fills a "gap" in early lamin A/C staining. Findings demonstrate that pluripotent hES cells have a markedly different overall nuclear architecture, remodeling of which is linked to early epigenomic programming and involves formation of unique PML-defined structures.


Asunto(s)
Núcleo Celular/ultraestructura , Células Madre Embrionarias/citología , Epigénesis Genética , Humanos , Leucemia Promielocítica Aguda/etiología , Leucemia Promielocítica Aguda/patología , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...