Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Antibiotics (Basel) ; 12(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37237755

RESUMEN

Isoniazid (INH) is an antibiotic that is widely used to treat tuberculosis (TB). Adaptation to environmental stress is a survival strategy for Mycobacterium tuberculosis and is associated with antibiotic resistance development. Here, mycobacterial adaptation following INH treatment was studied using a multi-stress system (MS), which mimics host-derived stress. Mtb H37Rv (drug-susceptible), mono-isoniazid resistant (INH-R), mono-rifampicin resistant (RIF-R), and multidrug-resistant (MDR) strains were cultivated in the MS with or without INH. The expression of stress-response genes (hspX, tgs1, icl1, and sigE) and lipoarabinomannan (LAM)-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC), which play important roles in the host-pathogen interaction, were measured using real-time PCR. The different adaptations of the drug-resistant (DR) and drug-susceptible (DS) strains were presented in this work. icl1 and dprE1 were up-regulated in the DR strains in the MS, implying their roles as markers of virulence and potential drug targets. In the presence of INH, hspX, tgs1, and sigE were up-regulated in the INH-R and RIF-R strains, while icl1 and LAM-related genes were up-regulated in the H37Rv strain. This study demonstrates the complexity of mycobacterial adaptation through stress response regulation and LAM expression in response to INH under the MS, which could potentially be applied for TB treatment and monitoring in the future.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36678022

RESUMEN

Tuberculosis (TB) therapy requires long-course multidrug regimens leading to the emergence of drug-resistant TB and increased public health burden worldwide. As the treatment strategy is more challenging, seeking a potent non-antibiotic agent has been raised. Propolis serve as a natural source of bioactive molecules. It has been evidenced to eliminate various microbial pathogens including Mycobacterium tuberculosis (Mtb). In this study, we fabricated the niosome-based drug delivery platform for ethanolic extract of propolis (EEP) using thin film hydration method with Ag85A aptamer surface modification (Apt-PEGNio/EEP) to target Mtb. Physicochemical characterization of PEGNio/EEP indicated approximately -20 mV of zeta potential, 180 nm of spherical nanoparticles, 80% of entrapment efficiency, and the sustained release profile. The Apt-PEGNio/EEP and PEGNio/EEP showed no difference in these characteristics. The chemical composition in the nanostructure was confirmed by Fourier transform infrared spectrometry. Apt-PEGNio/EEP showed specific binding to Mycobacterium expressing Ag85 membrane-bound protein by confocal laser scanning microscope. It strongly inhibited Mtb in vitro and exhibited non-toxicity on alveolar macrophages. These findings indicate that the Apt-PEGNio/EEP acts as an antimycobacterial nanoparticle and might be a promising innovative targeted treatment. Further application of this smart nano-delivery system will lead to effective TB management.

3.
Antibiotics (Basel) ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551389

RESUMEN

The epidemiology and genotypes of multidrug-resistant tuberculosis (MDR-TB), a global public health threat, remain limited. The genotypic distribution and factors associated with MDR-TB in upper northern Thailand between 2015 and 2019 were investigated. The DNA sequencing of rpoB, katG, and inhA promoter of 51 multidrug-resistant Mycobacterium tuberculosis isolates revealed nine patterns of the rpoB gene mutation distributed in seven provinces. The S531L mutation was the most common mutation in all provinces. The rpoB mutation in Chiang Rai, Chiang Mai, and Lampang was highly diverse compared to other areas. Here, the mutation profiles that have yet to be reported in northern Thailand (H526P, Q513P, and H526C) were detected in Chiang Rai province. The S315T katG mutation was the most common genotype associated with INH resistance, especially in Chiang Mai and Lampang. Further analysis of data from 110 TB patients (42 MDR-TB and 68 drug-susceptible TB) revealed that <60 years of age was a significant factor associated with MDR-TB (OR = 0.316, 95% CI 0.128−0.784, p = 0.011) and ≥60 years of age was a significant factor associated with the S315T katG-mutation (OR = 8.867, 95% CI 0.981−80.177, p = 0.047). This study highlighted the necessity for continuous surveillance and risk factor monitoring for effective control of MDR-TB.

4.
Antibiotics (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36551443

RESUMEN

Tuberculosis is a highly contagious disease caused by the Mycobacterium tuberculosis complex (MTBC). Although TB is treatable, multidrug-resistant, extensively drug-resistant, and totally drug-resistant forms of M. tuberculosis have become a new life-threatening concern. New anti-TB drugs that are capable of curing these drug-resistant strains are urgently needed. The purpose of this study is to determine the antimycobacterial activity of D-enantiomer human lactoferricin 1-11 (D-hLF 1-11) against mycobacteria in vitro using a 3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide colorimetric assay, resazurin microplate assay, and microscopic observation drug susceptibility assay. Three previously described antimicrobial peptides, protegrin-1, AK 15-6, and melittin, with potent anti-TB activity, were included in this study. The findings suggest that D-hLF 1-11 can inhibit the growth of M. tuberculosis with a minimum inhibitory concentration of 100−200 µg/mL in susceptible, isoniazid (INH)-monoresistant, rifampicin (RF)-monoresistant, and MDR strains. The peptide can also inhibit some nontuberculous mycobacteria and other MTBC in similar concentrations. The antibiofilm activity of D-hLF 1-11 against the biofilm-forming M. abscessus was determined by crystal violet staining, and no significant difference is observed between the treated and untreated biofilm control. The checkerboard assay was subsequently carried out with M. tuberculosis H37Rv and the results indicate that D-hLF 1-11 displays an additive effect when combined with INH and a synergistic effect when combined with RF, with fractional inhibitory concentration indices of 0.730 and 0.312, respectively. The red blood cell hemolytic assay was initially applied for the toxicity determination of D-hLF 1-11, and negligible hemolysis (<1%) was observed, despite a concentration of up to 4 mg/mL being evaluated. Overall, D-hLF 1-11 has potential as a novel antimycobacterial agent for the future treatment of drug-sensitive and drug-resistant M. tuberculosis infections.

5.
Diagnostics (Basel) ; 12(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36291996

RESUMEN

Rifampicin-resistant tuberculosis (RR-TB) has become a major threat globally. This study aims to develop a new assay, RIF-RDp, to enhance the detection of RR-TB based on combined locked nucleic acid (LNA) probes with high-resolution melting curve analysis (HRM). Two new LNA probes were designed to target the class-III and IV mutations of rpoB, H526D, and D516V. LNA probes showed 100% specificity in the detection of mutant targets among characterized and blinded Mycobacterium tuberculosis (Mtb) isolates. The performance of RIF-RDp was evaluated using 110 blinded clinical Mtb isolates in northern Thailand against drug-susceptibility testing (DST), DNA sequencing, and a commercial real-time PCR kit. This assay showed sensitivity and specificity of 94.55% and 98.18% compared to DST, and 96.36% and 100% compared to DNA sequencing. The efficacy of RIF-RDp was comparable to the commercial kit and DNA sequencing. The Cohen's Kappa statistic showed almost perfect agreement between RIF-RDp and the commercial kit (κ = 0.95), and RIF-RDp and DNA sequencing (κ = 0.96). Furthermore, this is the first report of the rare mutation profiles, S531W, and a triple codon deletion (510-512) in northern Thailand. According to high accuracy, the RIF-RDp assay may render an easy-to-use, low-cost, and promising diagnostics of RR-TB in the future.

6.
PLoS One ; 17(2): e0263127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35108302

RESUMEN

Non-healthcare workers with a high potential for exposure to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) may contribute to the virus spreading. Data among asymptomatic and high exposure risk populations is still scarce, in particular Chiang Mai and Lamphun provinces, Thailand. We conducted a cross-sectional observational study aiming to assess the prevalence of SARS-CoV-2 RNA positivity, anti-SARS-CoV-2 IgM/IgG, and potential associated factors among asymptomatic/mild symptomatic individuals with a high exposure risk in Chiang Mai and Lamphun provinces, during the second wave of outbreak in Thailand (November 2020-January 2021). Socio-demographic data was collected through an on-line questionnaire prior to collection of nasopharyngeal/throat swab samples and blood samples tested for SARS-CoV-2 RNA (DaAn Gene, China) and anti-SARS-CoV-2 IgM/IgG antibodies (commercial lateral flow immunoassays), respectively. Univariable and multivariable logistic regression analysis were used to analyze associated factors. None of 1,651 participants were found positive for SARS-CoV-2 RNA (0%, 95% confidence intervals, CI: 0-0.2). Fourteen were positive for anti-SARS-CoV-2 IgM/IgG antibodies (0.9%, 95% CI: 0.5-1.4), including 7 positives for IgM and 7 positives for IgG (0.4%, 95% CI: 0.2-0.9). Being over 50 years old was independently associated with virus exposure (OR: 5.8, 95% CI: 1.0-32.1%, p = 0.045). Despite high exposure risk, no current infection was found, and a very high proportion was still susceptible to SARS-CoV-2 infection and would clearly benefit from vaccination. Continuing active surveillance, rolling out of vaccination and monitoring response to vaccine will help better control the COVID-19 spread.


Asunto(s)
COVID-19/epidemiología , COVID-19/genética , SARS-CoV-2/genética , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Estudios Transversales , Femenino , Personal de Salud/estadística & datos numéricos , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Prevalencia , ARN Viral/análisis , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Pruebas Serológicas , Tailandia/epidemiología
7.
Infect Drug Resist ; 15: 399-412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153492

RESUMEN

INTRODUCTION: Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) remains a global health concern because of the development of drug resistance. The adaptability of MTB in response to a variety of environmental stresses is a crucial strategy that supports their survival and evades host defense mechanisms. Stress regulates gene expression, particularly virulence genes, leading to the development of drug tolerance. Mannose-capped lipoarabinomannan (ManLAM) is a critical component of the cell wall, functions as a virulence factor and influences host defense mechanisms. PURPOSE: This study focuses on the effect of isoniazid (INH) stress on the regulation of ManLAM-related genes, to improve our understanding of virulence and drug resistance development in MTB. MATERIALS AND METHODS: MTB with distinct drug resistance profiles were used for gene expression analysis. Multiplex-real time PCR assay was performed to monitor stress-related genes (hspX, tgs1, and sigE). The expression levels of ManLAM-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC) were quantified by qRT-PCR. Sequence analysis of drug resistance-associated genes (inhA, katG, and rpoB) and ManLAM-related genes were performed to establish a correlation between genetic variation and gene expression. RESULTS: INH treatment activates the stress response mechanism in MTB, resulting in a distinct gene expression pattern between drug resistance and drug-sensitive TB. In response to INH, hspX was up-regulated in RIF-R and MDR. tgs1 was strongly up-regulated in MDR, whereas sigE was dramatically up-regulated in the drug-sensitive TB. Interestingly, ManLAM-related genes were most up-regulated in drug resistance, notably MDR (pimB, mptA, dprE1, and embC), implying a role for drug resistance and adaptability of MTB via ManLAM modulation. CONCLUSION: This study establishes a relationship between the antibiotic stress response mechanism and the expression of ManLAM-related genes in MTB samples with diverse drug resistance profiles. The novel gene expression pattern in this work is valuable knowledge that can be applied for TB monitoring and treatment in the future.

8.
Infect Drug Resist ; 13: 3375-3382, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061484

RESUMEN

INTRODUCTION: Knowledge of the prevalence and distribution of multidrug-resistant tuberculosis (MDR-TB) genotypes in northern Thailand is still limited. An accurate, rapid, and cost-effective diagnostic of MDR-TB is crucial to improve treatment and control of increased MDR-TB. MATERIALS AND METHODS: The molecular diagnostic assays named "RIF-RD" and "INH-RD" were designed to detect rifampicin (RIF) and isoniazid (INH) resistance based on real-time PCR and high-resolution melting curve analysis. Applying the ∆Tm cutoff values, the RIF-RD and INH-RD were evaluated against the standard drug susceptibility testing (DST) using 107 and 103 clinical Mycobacterium tuberculosis (Mtb) isolates from northern Thailand. DNA sequence analysis of partial rpoB, katG, and inhA promoter of 73 Mtb isolates, which included 30 MDR-TB, was performed to elucidate the mutations involved with RIF and INH resistance. RESULTS: When compared with the phenotypic DST, RIF-RD targeting rpoB showed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 83.9, 98.6, 96.9, and 92.0%, respectively. The multiplex reaction of the INH-RD targeted both katG and inhA promoter showed high sensitivity, specificity, PPV, and NPV of 97.1, 94.2, 89.2, and 98.5%, respectively. Six patterns of rpoB mutation, predominately at codons 531 (50%) and 526 (40%) along with a rare S522L (3.33%) and D516V (3.33%), were detected. A single pattern of katG mutation (S315T) (63.3%) and four patterns of inhA promoter mutation, predominately -15 (C>T), were found. Approximately, 17% of MDR-TB strains possessed double mutations within the katG and inhA promoter. CONCLUSION: Up to 86.7% and 96.7% of MDR-TB could be accurately detected by RIF-RD and INH-RD, emphasizing its usefulness as a low unit price assay for rapid screening of MDR-TB, with confirmation of INH resistance in low and middle-income countries. The MDR-TB genotypes provided will be beneficial for TB control and the development of drug-resistant TB diagnostic technology in the future.

9.
Sci Rep ; 9(1): 18417, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804594

RESUMEN

Resistance to common drugs by microorganisms and cancers has become a major issue in modern healthcare, increasing the number of deaths worldwide. Novel therapeutic agents with a higher efficiency and less side effects for the treatment of certain diseases are urgently needed. Plant defensins have an integral role in a hosts' immune system and are attractive candidates for combatting drug-resistant microorganisms. Interestingly, some of these defensins also showed great potential due to their cytotoxic activity toward cancer cells. In this study, a defensin encoding gene was isolated from five legume seeds using 3' rapid amplification of cDNA ends (3' RACE) with degenerate primers and cDNA cloning strategies. Bioinformatic tools were used for in silico identification and the characterization of new sequences. To study the functional characteristics of these unique defensins, the gene encoded for Sesbania javanica defensin, designated as javanicin, was cloned into pTXB-1 plasmid and expressed in the Escherichia coli Origami 2 (DE3) strain. Under optimized conditions, a 34-kDa javanicin-intein fusion protein was expressed and approximately 2.5-3.5 mg/L of soluble recombinant javanicin was successfully extracted with over 90% purity. Recombinant javanicin displayed antifungal properties against human pathogenic fungi, including resistant strains, as well as cytotoxic activities toward the human breast cancer cell lines, MCF-7 & MDA-MB-231. Recombinant javanicin holds great promise as a novel therapeutic agent for further medical applications.


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Defensinas/farmacología , Proteínas de Plantas/farmacología , Cuassinas/farmacología , Sesbania/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Defensinas/química , Defensinas/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Cuassinas/química , Cuassinas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Semillas/química , Análisis de Secuencia de ADN , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
10.
Tuberculosis (Edinb) ; 108: 64-69, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29523329

RESUMEN

Drug resistance to Mycobacterium tuberculosis is a major health problem worldwide. Mycobacterium tuberculosis can progress to be mono-drug resistant or multi-drug resistant by improper treatment. The chemical stress of M. tuberculosis was performed in this study. Rv0559c is an unknown secreted protein. Rv0560c is a putative benzoquinone methyltransferase of M. tuberculosis cell. Rv0559c gene is located downstream of Rv0560c gene. Both genes respond to salicylate stress. Drug susceptible, isoniazid resistant, rifampicin resistant and multi-drug resistant phenotypes of M. tuberculosis clinical isolates were used to determine the expression of Rv0559c and Rv0560c by qRT-PCR. In all of mycobacteria strains there was up-regulation in both genes when stressed with isoniazid. This study determined the expression of both genes, which may play important roles in the drug resistance mechanism of mycobacteria.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Genotipo , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/patogenicidad , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Arch Microbiol ; 200(2): 299-309, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29119205

RESUMEN

The emergence of drug-resistant tuberculosis has generated great concern in the control of tuberculosis and HIV/TB patients have established severe complications that are difficult to treat. Although, the gold standard of drug-susceptibility testing is highly accurate and efficient, it is time-consuming. Diagnostic biomarkers are, therefore, necessary in discriminating between infection from drug-resistant and drug-susceptible strains. One strategy that aids to effectively control tuberculosis is understanding the function of secreting proteins that mycobacteria use to manipulate the host cellular defenses. In this study, culture filtrate proteins from Mycobacterium tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains were gathered and profiled by shotgun-proteomics technique. Mass spectrometric analysis of the secreted proteome identified several proteins, of which 837, 892, 838 and 850 were found in M. tuberculosis H37Rv, isoniazid-resistant, rifampicin-resistant and multidrug-resistant strains, respectively. These proteins have been implicated in various cellular processes, including biological adhesion, biological regulation, developmental process, immune system process localization, cellular process, cellular component organization or biogenesis, metabolic process, and response to stimulus. Analysis based on STITCH database predicted the interaction of DNA topoisomerase I, 3-oxoacyl-(acyl-carrier protein) reductase, ESAT-6-like protein, putative prophage phiRv2 integrase, and 3-phosphoshikimate 1-carboxyvinyltransferase with isoniazid, rifampicin, pyrazinamide, ethambutol and streptomycin, suggesting putative roles in controlling the anti-tuberculosis ability. However, several proteins with no interaction with all first-line anti-tuberculosis drugs might be used as markers for mycobacterial identification.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Proteómica/métodos , Rifampin/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Etambutol/farmacología , Perfilación de la Expresión Génica , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Pirazinamida/farmacología , Estreptomicina/farmacología
12.
J Med Microbiol ; 65(1): 36-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26474823

RESUMEN

Tuberculosis (TB), caused by members of the Mycobacterium tuberculosis complex (MTC), is the leading cause of infectious disease-related mortality worldwide. The standard method for TB diagnosis usually requires long periods of mycobacteria cultivation, leading to delayed diagnosis, inefficient treatment and widespread occurrence of the disease. Therefore, a rapid method for the detection and differentiation of MTC from other mycobacteria is essential for disease diagnosis. Here, we describe the potential of using the type I signal peptidase (lepB) gene as a novel target for TB diagnosis, based on confronting two-pair primers PCR (PCRCTPP) that can detect MTC and simultaneously differentiate M. bovis. The limit of detection of the developed technique was equivalent to 12­120 bacilli. PCR-CTPP was highly specific to only MTC and M. bovis, and no cross-reaction was detected in 27 DNA of the non-tuberculous mycobacterial and bacterial strains tested. Thirty-nine blinded clinical isolates and 72 sputum samples were used to validate the PCR-CTPP in comparison with the standard mycobacterial culture method. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of PCR-CTPP were equal to 95, 100, 100 and 95 %, respectively, when tested with clinical isolates. Furthermore, upon testing with the sputum samples, the sensitivity, specificity, PPV and NPV were observed to be 84, 76, 90 and 67 %, respectively. Hence, this highly sensitive novel technique, which is rapid, easy to conduct and cost-effective, is a potential method for TB diagnosis and epidemiological studies, especially in resource-limited countries with a high TB burden.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de la Membrana/genética , Mycobacterium tuberculosis/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Serina Endopeptidasas/genética , Análisis Costo-Beneficio , Cartilla de ADN , ADN Bacteriano/genética , Genes Bacterianos , Humanos , Límite de Detección , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sensibilidad y Especificidad , Esputo/microbiología , Tuberculosis/diagnóstico , Tuberculosis/microbiología
13.
Prep Biochem Biotechnol ; 46(3): 305-12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25831436

RESUMEN

The single-chain fragment variable (scFv) was used to produce a completely functional antigen-binding fragment in bacterial systems. The advancements in antibody engineering have simplified the method of producing Fv fragments and made it more efficient and generally relevant. In a previous study, the scFv anti HIV-1 P17 protein was produced by a batch production system, optimized by the sequential simplex optimization method. This study continued that work in order to enhance secreted scFv production by fed-batch cultivation, which supported high volumetric productivity and provided a large amount of scFvs for diagnostic and therapeutic research. The developments in cell culture media and process parameter settings were required to realize the maximum production of cells. This study investigated the combined optimization methods, Plackett-Burman design (PBD) and sequential simplex optimization, with the aim of optimize feed medium. Fed-batch cultivation with an optimal feeding rate was determined. The result demonstrated that a 20-mL/hr feeding rate of the optimized medium can increase cell growth, total protein production, and scFv anti-p17 activity by 4.43, 1.48, and 6.5 times more than batch cultivation, respectively. The combined optimization method demonstrated novel power tools for the optimization strategy of multiparameter experiments.


Asunto(s)
Escherichia coli/genética , Antígenos VIH/inmunología , Anticuerpos de Cadena Única/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Western Blotting , Electroforesis en Gel de Poliacrilamida , Fermentación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/inmunología
14.
Prep Biochem Biotechnol ; 45(1): 56-68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24884357

RESUMEN

The optimal culture condition for extracellular recombinant single chain variable fragment anti HIV-1 p17 protein (scFv anti-p17) production in Escherichia coli HB2151 was investigated by the sequential simplex optimization (SS) method. Five variable parameters were submitted in the fermentation process. The most favorable condition obtained from 19 independent experiments was as followed: 58 µM of IPTG induction to 1.7 OD600 nm at 25.5°C for 16 h with 202 rpm agitation rate. The amount of secreted scFv anti-p17 at the optimal condition was 38% higher than under the control condition. The binding activity of soluble extracellular scFv anti-p17 protein increased 95.5% and 73.2% in comparison with the control condition and non-optimized condition respectively. The soluble scFv anti-p17 from crude HB2151 lysated was subsequently purified by immobilized metal ion affinity chromatography (IMAC) with His-tag. The purified scFv anti-p17 was intact and retained its antigen-binding affinity against HIV-1 p17. We demonstrated that the sequential simplex optimization method was a key for exertion of high yield with fewer experimental requirements for acquiring of large scale secretory protein production.


Asunto(s)
Escherichia coli/genética , Antígenos VIH/inmunología , Microbiología Industrial/métodos , Proteínas Recombinantes/metabolismo , Anticuerpos de Cadena Única/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Cromatografía de Afinidad , Ensayo de Inmunoadsorción Enzimática , Antígenos VIH/genética , Antígenos VIH/metabolismo , VIH-1 , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos de Cadena Única/genética , Solubilidad , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
16.
Electron. j. biotechnol ; 9(4)July 2006. ilus, tab, graf
Artículo en Inglés | LILACS | ID: lil-451658

RESUMEN

A myrosinase (thioglucoside glucohydrolase or thioglucosidase, EC 3.2.3.147) producing fungus, Aspergillus sp. NR4617, was newly isolated from decayed soil sample obtained in Thailand and was subjected to single exposure to two chemical mutagens, ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Its myrosinase production was selected on low cost medium prepared from mustard seed cake (Brassica juncea). Studies of production and stability of the enzyme showed that EMS mutagenesis increased myrosinase activity. Aspergillus sp. NR4617E1 produced myrosinase 1.90 U ml-1 at 36 hrs of the cultivation equivalent to 171 percent of the enzyme production in wild-type. The stability studies revealed that myrosinase from the mutant strains retained activity similar to wild-type at 30ºC. Aspergillus sp. NR4617E1 degraded 10 mM of glucosinolate completely in 36 hrs. Enhanced myrosinase production and high yields of products (allylisothiocyanate) demonstrated that this mutant could be a new found candidate for feed detoxification and industrial allylisothiocyanate production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...