Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(7): 3709-3726, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35234897

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen that causes severe infections of the cystic fibrosis (CF) lung. To acquire iron, B. cenocepacia secretes the Fe(III)-binding compound, ornibactin. Genes for synthesis and utilisation of ornibactin are served by the iron starvation (IS) extracytoplasmic function (ECF) σ factor, OrbS. Transcription of orbS is regulated in response to the prevailing iron concentration by the ferric uptake regulator (Fur), such that orbS expression is repressed under iron-sufficient conditions. Here we show that, in addition to Fur-mediated regulation of orbS, the OrbS protein itself responds to intracellular iron availability. Substitution of cysteine residues in the C-terminal region of OrbS diminished the ability to respond to Fe(II) in vivo. Accordingly, whilst Fe(II) impaired transcription from and recognition of OrbS-dependent promoters in vitro by inhibiting the binding of OrbS to core RNA polymerase (RNAP), the cysteine-substituted OrbS variant was less responsive to Fe(II). Thus, the cysteine residues within the C-terminal region of OrbS contribute to an iron-sensing motif that serves as an on-board 'anti-σ factor' in the presence of Fe(II). A model to account for the presence two regulators (Fur and OrbS) that respond to the same intracellular Fe(II) signal to control ornibactin synthesis and utilisation is discussed.


Asunto(s)
Proteínas Bacterianas , Burkholderia cenocepacia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia/genética , Fibrosis Quística/complicaciones , Compuestos Ferrosos/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Hierro/metabolismo
2.
J Bacteriol ; 201(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30455278

RESUMEN

OrbS and PvdS are extracytoplasmic function (ECF) σ factors that regulate transcription of operons required for the biosynthesis of the siderophores ornibactin and pyoverdine in the Burkholderia cepacia complex and Pseudomonas spp., respectively. Here we show that promoter recognition by OrbS requires specific tetrameric -35 and -10 element sequences that are strikingly similar to those of the consensus PvdS-dependent promoter. However, whereas Pseudomonas aeruginosa PvdS can serve OrbS-dependent promoters, OrbS cannot utilize PvdS-dependent promoters. To identify features present at OrbS-dependent promoters that facilitate recognition by OrbS, we carried out a detailed analysis of the nucleotide sequence requirements for promoter recognition by both OrbS and PvdS. This revealed that DNA sequence features located outside the sigma binding elements are required for efficient promoter utilization by OrbS. In particular, the presence of an A-tract extending downstream from the -35 element at OrbS-dependent promoters was shown to be an important contributor to OrbS specificity. Our observations demonstrate that the nature of the spacer sequence can have a major impact on promoter recognition by some ECF σ factors through modulation of the local DNA architecture.IMPORTANCE ECF σ factors regulate subsets of bacterial genes in response to environmental stress signals by directing RNA polymerase to promoter sequences known as the -35 and -10 elements. In this work, we identify the -10 and -35 elements that are recognized by the ECF σ factor OrbS. Furthermore, we demonstrate that efficient promoter utilization by this σ factor also requires a polyadenine tract located downstream of the -35 region. We propose that the unique architecture of A-tract DNA imposes conformational features on the -35 element that facilitates efficient recognition by OrbS. Our results show that sequences located between the core promoter elements can make major contributions to promoter recognition by some ECF σ factors.


Asunto(s)
Burkholderia cenocepacia/metabolismo , ADN Bacteriano/metabolismo , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/metabolismo , Factor sigma/metabolismo , Especificidad por Sustrato , Burkholderia cenocepacia/genética , Análisis Mutacional de ADN , ADN Bacteriano/genética , Hierro/metabolismo , Unión Proteica , Pseudomonas aeruginosa/genética , Oligoelementos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-30181989

RESUMEN

[This corrects the article DOI: 10.3389/fcimb.2017.00460.].

4.
Artículo en Inglés | MEDLINE | ID: mdl-29164069

RESUMEN

Burkholderia is a genus within the ß-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans.


Asunto(s)
Infecciones por Burkholderia/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia/metabolismo , Burkholderia/patogenicidad , Hierro/metabolismo , Virulencia , Animales , Burkholderia/clasificación , Burkholderia/genética , Burkholderia gladioli/metabolismo , Burkholderia gladioli/patogenicidad , Burkholderia mallei/metabolismo , Burkholderia mallei/patogenicidad , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidad , Biología Computacional , Fibrosis Quística/microbiología , Ferritinas/metabolismo , Muermo , Hemo/metabolismo , Caballos , Humanos , Lactoferrina/metabolismo , Pulmón/microbiología , Melioidosis/microbiología , Sideróforos/metabolismo
5.
Virulence ; 8(1): 30-40, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27367830

RESUMEN

Trehalose is a disaccharide formed from two glucose molecules. This sugar molecule can be isolated from a range of organisms including bacteria, fungi, plants and invertebrates. Trehalose has a variety of functions including a role as an energy storage molecule, a structural component of glycolipids and plays a role in the virulence of some microorganisms. There are many metabolic pathways that control the biosynthesis and degradation of trehalose in different organisms. The enzyme trehalase forms part of a pathway that converts trehalose into glucose. In this study we set out to investigate whether trehalase plays a role in both stress adaptation and virulence of Burkholderia pseudomallei. We show that a trehalase deletion mutant (treA) had increased tolerance to thermal stress and produced less biofilm than the wild type B. pseudomallei K96243 strain. We also show that the ΔtreA mutant has reduced ability to survive in macrophages and that it is attenuated in both Galleria mellonella (wax moth larvae) and a mouse infection model. This is the first report that trehalase is important for bacterial virulence.


Asunto(s)
Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/patogenicidad , Macrófagos/microbiología , Melioidosis/microbiología , Mariposas Nocturnas/microbiología , Trehalasa/metabolismo , Animales , Biopelículas/crecimiento & desarrollo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crecimiento & desarrollo , Modelos Animales de Enfermedad , Larva/microbiología , Ratones , Eliminación de Secuencia , Estrés Fisiológico , Temperatura , Trehalasa/genética , Trehalosa/metabolismo , Virulencia , Factores de Virulencia/genética
6.
Plasmid ; 89: 49-56, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27825973

RESUMEN

To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis.


Asunto(s)
Burkholderia/genética , ADN Bacteriano , Mutación , Plásmidos/genética , Antibacterianos/farmacología , Burkholderia/efectos de los fármacos , Farmacorresistencia Bacteriana , Orden Génico , Humanos
7.
Res Microbiol ; 167(3): 159-67, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26654915

RESUMEN

Kynurenine formamidase (KynB) forms part of the kynurenine pathway which metabolises tryptophan to anthranilate. This metabolite can be used for downstream production of 2-alkyl-4-quinolone (AQ) signalling molecules that control virulence in Pseudomonas aeruginosa. Here we investigate the role of kynB in the production of AQs and virulence-associated phenotypes of Burkholderia pseudomallei K96243, the causative agent of melioidosis. Deletion of kynB resulted in reduced AQ production, increased biofilm formation, decreased swarming and increased tolerance to ciprofloxacin. Addition of exogenous anthranilic acid restored the biofilm phenotype, but not the persister phenotype. This study suggests the kynurenine pathway is a critical source of anthranilate and signalling molecules that may regulate B. pseudomallei virulence.


Asunto(s)
Arilformamidasa/metabolismo , Biopelículas/crecimiento & desarrollo , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/fisiología , Locomoción , Quinolonas/metabolismo , Transducción de Señal , Burkholderia pseudomallei/genética , Eliminación de Gen , Triptófano/metabolismo , Virulencia , ortoaminobenzoatos/metabolismo
8.
Methods Mol Biol ; 1333: 121-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26468105

RESUMEN

We have developed a method to analyze the functionality of putative TA loci by expressing them in Escherichia coli. Here, we describe the procedure for cloning recombinant TA genes into inducible plasmids and expressing these in E. coli. Following expression, toxicity, resuscitation of growth, and changes in persister cell formation are assayed. This can confirm whether predicted TA loci are active in E. coli and whether expression can affect persister cell formation.


Asunto(s)
Antitoxinas/genética , Toxinas Bacterianas/genética , Clonación Molecular/métodos , Escherichia coli/genética , Antitoxinas/biosíntesis , Toxinas Bacterianas/biosíntesis , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
9.
Biochem J ; 459(2): 333-44, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24502667

RESUMEN

TA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded ß-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.


Asunto(s)
Toxinas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Burkholderia pseudomallei/citología , Burkholderia pseudomallei/efectos de los fármacos , Burkholderia pseudomallei/genética , Ceftazidima/farmacología , Ciprofloxacina/farmacología , Clonación Molecular , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/fisiología , Pruebas de Sensibilidad Microbiana , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN Bicatenario
10.
FEMS Microbiol Lett ; 338(1): 86-94, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23082999

RESUMEN

Type II toxin-antitoxin (TA) systems are believed to be widely distributed amongst bacteria although their biological functions are not clear. We have identified eight candidate TA systems in the genome of the human pathogen Burkholderia pseudomallei. Five of these were located in genome islands. Of the candidate toxins, BPSL0175 (RelE1) or BPSS1060 (RelE2) caused growth to cease when expressed in Escherichia coli, whereas expression of BPSS0390 (HicA) or BPSS1584 (HipA) (in an E. coli ΔhipBA background) caused a reduction in the number of culturable bacteria. The cognate antitoxins could restore growth and culturability of cells.


Asunto(s)
Antitoxinas/química , Toxinas Bacterianas/química , Burkholderia pseudomallei/química , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Biología Computacional , Medios de Cultivo , Escherichia coli/química , Escherichia coli/genética , Genoma Bacteriano/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...