Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMJ Med ; 3(1): e000732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737200

RESUMEN

Objectives: To assess whether age, sex, comorbidity count, and race and ethnic group are associated with the likelihood of trial participants not being enrolled in a trial for any reason (ie, screen failure). Design: Bayesian meta-analysis of individual participant level data. Setting: Industry funded phase 3/4 trials of chronic medical conditions. Participants: Participants were identified using individual participant level data to be in either the enrolled group or screen failure group. Data were available for 52 trials involving 72 178 screened individuals of whom 24 733 (34%) were excluded from the trial at the screening stage. Main outcome measures: For each trial, logistic regression models were constructed to assess likelihood of screen failure in people who had been invited to screening, and were regressed on age (per 10 year increment), sex (male v female), comorbidity count (per one additional comorbidity), and race or ethnic group. Trial level analyses were combined in Bayesian hierarchical models with pooling across condition. Results: In age and sex adjusted models across all trials, neither age nor sex was associated with increased odds of screen failure, although weak associations were detected after additionally adjusting for comorbidity (odds ratio of age, per 10 year increment was 1.02 (95% credibility interval 1.01 to 1.04) and male sex (0.95 (0.91 to 1.00)). Comorbidity count was weakly associated with screen failure, but in an unexpected direction (0.97 per additional comorbidity (0.94 to 1.00), adjusted for age and sex). People who self-reported as black seemed to be slightly more likely to fail screening than people reporting as white (1.04 (0.99 to 1.09)); a weak effect that seemed to persist after adjustment for age, sex, and comorbidity count (1.05 (0.98 to 1.12)). The between-trial heterogeneity was generally low, evidence of heterogeneity by sex was noted across conditions (variation in odds ratios on log scale of 0.01-0.13). Conclusions: Although the conclusions are limited by uncertainty about the completeness or accuracy of data collection among participants who were not randomised, we identified mostly weak associations with an increased likelihood of screen failure for age, sex, comorbidity count, and black race or ethnic group. Proportionate increases in screening these underserved populations may improve representation in trials. Trial registration number: PROSPERO CRD42018048202.

2.
J Multimorb Comorb ; 13: 26335565231213571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953975

RESUMEN

Background: People with comorbidities are under-represented in randomised controlled trials, and it is unknown whether patterns of comorbidity are similar in trials and the community. Methods: Individual-level participant data were obtained for 83 clinical trials (54,688 participants) for 16 index conditions from two trial repositories: Yale University Open Data Access (YODA) and the Centre for Global Clinical Research Data (Vivli). Community data (860,177 individuals) were extracted from the Secure Anonymised Information Linkage (SAIL) databank for the same index conditions. Comorbidities were defined using concomitant medications. For each index condition, we estimated correlations between comorbidities separately in trials and community data. For the six commonest comorbidities we estimated all pairwise correlations using Bayesian multivariate probit models, conditioning on age and sex. Correlation estimates from trials with the same index condition were combined into a single estimate. We then compared the trial and community estimates for each index condition. Results: Despite a higher prevalence of comorbidities in the community than in trials, the correlations between comorbidities were mostly similar in both settings. On comparing correlations between the community and trials, 21% of correlations were stronger in the community, 10% were stronger in the trials and 68% were similar in both. In the community, 5% of correlations were negative, 21% were null, 56% were weakly positive and 18% were strongly positive. Equivalent results for the trials were 11%, 33%, 45% and 10% respectively. Conclusions: Comorbidity correlations are generally similar in both the trials and community, providing some evidence for the reporting of comorbidity-specific findings from clinical trials.

3.
PLoS Med ; 20(6): e1004176, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37279199

RESUMEN

BACKGROUND: People with comorbidities are underrepresented in clinical trials. Empirical estimates of treatment effect modification by comorbidity are lacking, leading to uncertainty in treatment recommendations. We aimed to produce estimates of treatment effect modification by comorbidity using individual participant data (IPD). METHODS AND FINDINGS: We obtained IPD for 120 industry-sponsored phase 3/4 trials across 22 index conditions (n = 128,331). Trials had to be registered between 1990 and 2017 and have recruited ≥300 people. Included trials were multicentre and international. For each index condition, we analysed the outcome most frequently reported in the included trials. We performed a two-stage IPD meta-analysis to estimate modification of treatment effect by comorbidity. First, for each trial, we modelled the interaction between comorbidity and treatment arm adjusted for age and sex. Second, for each treatment within each index condition, we meta-analysed the comorbidity-treatment interaction terms from each trial. We estimated the effect of comorbidity measured in 3 ways: (i) the number of comorbidities (in addition to the index condition); (ii) presence or absence of the 6 commonest comorbid diseases for each index condition; and (iii) using continuous markers of underlying conditions (e.g., estimated glomerular filtration rate (eGFR)). Treatment effects were modelled on the usual scale for the type of outcome (absolute scale for numerical outcomes, relative scale for binary outcomes). Mean age in the trials ranged from 37.1 (allergic rhinitis trials) to 73.0 (dementia trials) and percentage of male participants range from 4.4% (osteoporosis trials) to 100% (benign prostatic hypertrophy trials). The percentage of participants with 3 or more comorbidities ranged from 2.3% (allergic rhinitis trials) to 57% (systemic lupus erythematosus trials). We found no evidence of modification of treatment efficacy by comorbidity, for any of the 3 measures of comorbidity. This was the case for 20 conditions for which the outcome variable was continuous (e.g., change in glycosylated haemoglobin in diabetes) and for 3 conditions in which the outcomes were discrete events (e.g., number of headaches in migraine). Although all were null, estimates of treatment effect modification were more precise in some cases (e.g., sodium-glucose co-transporter-2 (SGLT2) inhibitors for type 2 diabetes-interaction term for comorbidity count 0.004, 95% CI -0.01 to 0.02) while for others credible intervals were wide (e.g., corticosteroids for asthma-interaction term -0.22, 95% CI -1.07 to 0.54). The main limitation is that these trials were not designed or powered to assess variation in treatment effect by comorbidity, and relatively few trial participants had >3 comorbidities. CONCLUSIONS: Assessments of treatment effect modification rarely consider comorbidity. Our findings demonstrate that for trials included in this analysis, there was no empirical evidence of treatment effect modification by comorbidity. The standard assumption used in evidence syntheses is that efficacy is constant across subgroups, although this is often criticised. Our findings suggest that for modest levels of comorbidities, this assumption is reasonable. Thus, trial efficacy findings can be combined with data on natural history and competing risks to assess the likely overall benefit of treatments in the context of comorbidity.


Asunto(s)
Asma , Diabetes Mellitus Tipo 2 , Rinitis Alérgica , Humanos , Masculino , Comorbilidad , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
PLoS Med ; 20(1): e1004154, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649256

RESUMEN

BACKGROUND: Health-related quality of life metrics evaluate treatments in ways that matter to patients, so are often included in randomised clinical trials (hereafter trials). Multimorbidity, where individuals have 2 or more conditions, is negatively associated with quality of life. However, whether multimorbidity predicts change over time or modifies treatment effects for quality of life is unknown. Therefore, clinicians and guideline developers are uncertain about the applicability of trial findings to people with multimorbidity. We examined whether comorbidity count (higher counts indicating greater multimorbidity) (i) is associated with quality of life at baseline; (ii) predicts change in quality of life over time; and/or (iii) modifies treatment effects on quality of life. METHODS AND FINDINGS: Included trials were registered on the United States trials registry for selected index medical conditions and drug classes, phase 2/3, 3 or 4, had ≥300 participants, a nonrestrictive upper age limit, and were available on 1 of 2 trial repositories on 21 November 2016 and 18 May 2018, respectively. Of 124 meeting these criteria, 56 trials (33,421 participants, 16 index conditions, and 23 drug classes) collected a generic quality of life outcome measure (35 EuroQol-5 dimension (EQ-5D), 31 36-item short form survey (SF-36) with 10 collecting both). Blinding and completeness of follow up were examined for each trial. Using trials where individual participant data (IPD) was available from 2 repositories, a comorbidity count was calculated from medical history and/or prescriptions data. Linear regressions were fitted for the association between comorbidity count and (i) quality of life at baseline; (ii) change in quality of life during trial follow up; and (iii) treatment effects on quality of life. These results were then combined in Bayesian linear models. Posterior samples were summarised via the mean, 2.5th and 97.5th percentiles as credible intervals (95% CI) and via the proportion with values less than 0 as the probability (PBayes) of a negative association. All results are in standardised units (obtained by dividing the EQ-5D/SF-36 estimates by published population standard deviations). Per additional comorbidity, adjusting for age and sex, across all index conditions and treatment comparisons, comorbidity count was associated with lower quality of life at baseline and with a decline in quality of life over time (EQ-5D -0.02 [95% CI -0.03 to -0.01], PBayes > 0.999). Associations were similar, but with wider 95% CIs crossing the null for SF-36-PCS and SF-36-MCS (-0.05 [-0.10 to 0.01], PBayes = 0.956 and -0.05 [-0.10 to 0.01], PBayes = 0.966, respectively). Importantly, there was no evidence of any interaction between comorbidity count and treatment efficacy for either EQ-5D or SF-36 (EQ-5D -0.0035 [95% CI -0.0153 to -0.0065], PBayes = 0.746; SF-36-MCS (-0.0111 [95% CI -0.0647 to 0.0416], PBayes = 0.70 and SF-36-PCS -0.0092 [95% CI -0.0758 to 0.0476], PBayes = 0.631. CONCLUSIONS: Treatment effects on quality of life did not differ by multimorbidity (measured via a comorbidity count) at baseline-for the medical conditions studied, types and severity of comorbidities and level of quality of life at baseline, suggesting that evidence from clinical trials is likely to be applicable to settings with (at least modestly) higher levels of comorbidity. TRIAL REGISTRATION: A prespecified protocol was registered on PROSPERO (CRD42018048202).


Asunto(s)
Calidad de Vida , Humanos , Teorema de Bayes , Enfermedad Crónica , Encuestas y Cuestionarios , Comorbilidad
5.
BMJ Med ; 1(1): e000217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36936559

RESUMEN

Objectives: To estimate the association between individual participant characteristics and attrition from randomised controlled trials. Design: Meta-analysis of individual participant level data (IPD). Data sources: Clinical trial repositories (Clinical Study Data Request and Yale University Open Data Access). Eligibility criteria for selecting studies: Eligible phase 3 or 4 trials identified according to prespecified criteria (PROSPERO CRD42018048202). Main outcome measures: Association between comorbidity count (identified using medical history or concomitant drug treatment data) and trial attrition (failure for any reason to complete the final trial visit), estimated in logistic regression models and adjusted for age and sex. Estimates were meta-analysed in bayesian linear models, with partial pooling across index conditions and drug classes. Results: In 92 trials across 20 index conditions and 17 drug classes, the mean comorbidity count ranged from 0.3 to 2.7. Neither age nor sex was clearly associated with attrition (odds ratio 1.04, 95% credible interval 0.98 to 1.11; and 0.99, 0.93 to 1.05, respectively). However, comorbidity count was associated with trial attrition (odds ratio per additional comorbidity 1.11, 95% credible interval 1.07 to 1.14). No evidence of non-linearity (assessed via a second order polynomial) was seen in the association between comorbidity count and trial attrition, with minimal variation across drug classes and index conditions. At a trial level, an increase in participant comorbidity count has a minor impact on attrition: for a notional trial with high level of attrition in individuals without comorbidity, doubling the mean comorbidity count from 1 to 2 translates to an increase in trial attrition from 29% to 31%. Conclusions: Increased comorbidity count, irrespective of age and sex, is associated with a modest increased odds of participant attrition. The benefit of increased generalisability of including participants with multimorbidity seems likely to outweigh the disadvantages of increased attrition.

6.
Med Decis Making ; 42(2): 228-240, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34407672

RESUMEN

BACKGROUND: There is limited guidance for using common drug therapies in the context of multimorbidity. In part, this is because their effectiveness for patients with specific comorbidities cannot easily be established using subgroup analyses in clinical trials. Here, we use simulations to explore the feasibility and implications of concurrently estimating effects of related drug treatments in patients with multimorbidity by partially pooling subgroup efficacy estimates across trials. METHODS: We performed simulations based on the characteristics of 161 real clinical trials of noninsulin glucose-lowering drugs for diabetes, estimating subgroup effects for patients with a hypothetical comorbidity across related trials in different scenarios using Bayesian hierarchical generalized linear models. We structured models according to an established ontology-the World Health Organization Anatomic Chemical Therapeutic Classifications-allowing us to nest all trials within drugs and all drugs within anatomic chemical therapeutic classes, with effects partially pooled at each level of the hierarchy. In a range of scenarios, we compared the performance of this model to random effects meta-analyses of all drugs individually. RESULTS: Hierarchical, ontology-based Bayesian models were unbiased and accurately recovered simulated comorbidity-drug interactions. Compared with single-drug meta-analyses, they offered a relative increase in precision of up to 250% in some scenarios because of information sharing across the hierarchy. Because of the relative precision of the approaches, a large proportion of small subgroup effects was detectable only using the hierarchical model. CONCLUSIONS: By assuming that similar drugs may have similar subgroup effects, Bayesian hierarchical models based on structures defined by existing ontologies can be used to improve the precision of treatment efficacy estimates in patients with multimorbidity, with potential implications for clinical decision making.


Asunto(s)
Multimorbilidad , Preparaciones Farmacéuticas , Teorema de Bayes , Simulación por Computador , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...