Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Death Discov ; 10(1): 119, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453894

RESUMEN

Alzheimer's disease (AD) progression and pathology show pronounced sex differences, but the factors driving these remain poorly understood. To gain insights into early AD-associated molecular changes and their sex dependency for tau pathology in the cortex, we performed single-cell RNA-seq in the THY-Tau22 AD mouse model. By examining cell type-specific and cell type-agnostic AD-related gene activity changes and their sex-dimorphism for individual genes, pathways and cellular sub-networks, we identified both statistically significant alterations and interpreted the upstream mechanisms controlling them. Our results confirm several significant sex-dependent alterations in gene activity in the THY-Tau22 model mice compared to controls, with more pronounced alterations in females. Both changes shared across multiple cell types and cell type-specific changes were observed. The differential genes showed significant over-representation of known AD-relevant processes, such as pathways associated with neuronal differentiation, programmed cell death and inflammatory responses. Regulatory network analysis of these genes revealed upstream regulators that modulate many of the downstream targets with sex-dependent changes. Most key regulators have been previously implicated in AD, such as Egr1, Klf4, Chchd2, complement system genes, and myelin-associated glycoproteins. Comparing with similar data from the Tg2576 AD mouse model and human AD patients, we identified multiple genes with consistent, cell type-specific and sex-dependent alterations across all three datasets. These shared changes were particularly evident in the expression of myelin-associated genes such as Mbp and Plp1 in oligodendrocytes. In summary, we observed significant cell type-specific transcriptomic changes in the THY-Tau22 mouse model, with a strong over-representation of known AD-associated genes and processes. These include both sex-neutral and sex-specific patterns, characterized by consistent shifts in upstream master regulators and downstream target genes. Collectively, these findings provide insights into mechanisms influencing sex-specific susceptibility to AD and reveal key regulatory proteins that could be targeted for developing treatments addressing sex-dependent AD pathology.

2.
Cell Rep ; 42(9): 113071, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676767

RESUMEN

Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, dopaminergic neuron loss, and alpha-synuclein (αSyn) inclusions. Many PD risk factors are known, but those affecting disease progression are not. Lifestyle and microbial dysbiosis are candidates in this context. Diet-driven gut dysbiosis and reduced barrier function may increase exposure of enteric neurons to toxins. Here, we study whether fiber deprivation and exposure to bacterial curli, a protein cross-seeding with αSyn, individually or together, exacerbate disease in the enteric and central nervous systems of a transgenic PD mouse model. We analyze the gut microbiome, motor behavior, and gastrointestinal and brain pathologies. We find that diet and bacterial curli alter the microbiome and exacerbate motor performance, as well as intestinal and brain pathologies, but to different extents. Our results shed important insights on how diet and microbiome-borne insults modulate PD progression via the gut-brain axis and have implications for lifestyle management of PD.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/patología , Microbioma Gastrointestinal/fisiología , Disbiosis , alfa-Sinucleína/metabolismo , Ratones Transgénicos
3.
Mol Neurobiol ; 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35980567

RESUMEN

Alzheimer's disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and reactive oxygen species metabolism, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant cell-type specific gene expression changes in individual genes, pathways and sub-networks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD.

4.
Glia ; 70(5): 935-960, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35092321

RESUMEN

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α-syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α-syn induced by striatal injection of α-syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α-syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α-syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α-syn inclusion formation is not the major driver in the early phases of PD-like neurodegeneration, but that microglia, activated by diffusible, oligomeric α-syn, may play a key role in this process. Our findings uncover new features of α-syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α-syn spreading.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
5.
Epigenetics Chromatin ; 14(1): 43, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503558

RESUMEN

BACKGROUND: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson's disease and schizophrenia. Many genetic variants affect regulatory regions and alter gene expression in a cell-type-specific manner depending on the chromatin structure and accessibility. RESULTS: We report 20,658 single-nuclei chromatin accessibility profiles of ventral midbrain from two genetically and phenotypically distinct mouse strains. We distinguish ten cell types based on chromatin profiles and analysis of accessible regions controlling cell identity genes highlights cell-type-specific key transcription factors. Regulatory variation segregating the mouse strains manifests more on transcriptome than chromatin level. However, cell-type-level data reveals changes not captured at tissue level. To discover the scope and cell-type specificity of cis-acting variation in midbrain gene expression, we identify putative regulatory variants and show them to be enriched at differentially expressed loci. Finally, we find TCF7L2 to mediate trans-acting variation selectively in midbrain neurons. CONCLUSIONS: Our data set provides an extensive resource to study gene regulation in mesencephalon and provides insights into control of cell identity in the midbrain and identifies cell-type-specific regulatory variation possibly underlying phenotypic and behavioural differences between mouse strains.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Cromatina/genética , Mesencéfalo/metabolismo , Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
6.
Genes Brain Behav ; 20(8): e12769, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453370

RESUMEN

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to loss of striatal dopamine (DA). Here, we measured DA concentration in the dorsal striatum of 32 members of Collaborative Cross (CC) family and their eight founder strains. Striatal DA varied greatly in founders, and differences were highly heritable in the inbred CC progeny. We identified a locus, containing 164 genes, linked to DA concentration in the dorsal striatum on chromosome X. We used RNAseq profiling of the ventral midbrain of two founders with substantial difference in striatal DA-C56BL/6 J and A/J-to highlight potential protein-coding candidates modulating this trait. Among the five differentially expressed genes within the locus, we found that the gene coding for the collagen IV alpha 6 chain (Col4a6) was expressed nine times less in A/J than in C57BL/6J. Using single cell RNA-seq data from developing human midbrain, we found that COL4A6 is highly expressed in radial glia-like cells and neuronal progenitors, indicating a role in neuronal development. Collagen IV alpha-6 chain (COL4A6) controls axogenesis in simple model organisms. Consistent with these findings, A/J mice had less striatal axonal branching than C57BL/6J mice. We tentatively conclude that DA concentration and axonal branching in dorsal striatum are modulated by COL4A6, possibly during development. Our study shows that genetic mapping based on an easily measured Central Nervous System (CNS) trait, using the CC population, combined with follow-up observations, can parse heritability of such a trait, and nominate novel functions for commonly expressed proteins.


Asunto(s)
Colágeno Tipo IV/genética , Cuerpo Estriado/metabolismo , Proyección Neuronal , Sitios de Carácter Cuantitativo , Animales , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Cuerpo Estriado/crecimiento & desarrollo , Dopamina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL
7.
Front Immunol ; 12: 639613, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854507

RESUMEN

Microglia are the resident immune effector cells of the central nervous system (CNS) rapidly reacting to various pathological stimuli to maintain CNS homeostasis. However, microglial reactions in the CNS may also worsen neurological disorders. Hence, the phenotypic analysis of microglia in healthy tissue may identify specific poised subsets ultimately supporting or harming the neuronal network. This is all the more important for the understanding of CNS disorders exhibiting regional-specific and cellular pathological hallmarks, such as many neurodegenerative disorders, including Parkinson's disease (PD). In this context, we aimed to address the heterogeneity of microglial cells in susceptible brain regions for PD, such as the nigrostriatal pathway. Here, we combined single-cell RNA-sequencing with immunofluorescence analyses of the murine nigrostriatal pathway, the most affected brain region in PD. We uncovered a microglia subset, mainly present in the midbrain, displaying an intrinsic transcriptional immune alerted signature sharing features of inflammation-induced microglia. Further, an in situ morphological screening of inferred cellular diversity showed a decreased microglia complexity in the midbrain when compared to striatum. Our study provides a resource for the identification of specific microglia phenotypes within the nigrostriatal pathway, which may be relevant in PD.


Asunto(s)
Microglía/patología , Transcriptoma/genética , Animales , Cuerpo Estriado/patología , Femenino , Inflamación/genética , Inflamación/patología , Mesencéfalo/patología , Ratones , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fenotipo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcripción Genética/genética
8.
Mol Neurobiol ; 58(2): 576-602, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32997293

RESUMEN

Understanding Parkinson's disease (PD), in particular in its earliest phases, is important for diagnosis and treatment. However, human brain samples are collected post-mortem, reflecting mainly end-stage disease. Because brain samples of mouse models can be collected at any stage of the disease process, they are useful in investigating PD progression. Here, we compare ventral midbrain transcriptomics profiles from α-synuclein transgenic mice with a progressive, early PD-like striatal neurodegeneration across different ages using pathway, gene set, and network analysis methods. Our study uncovers statistically significant altered genes across ages and between genotypes with known, suspected, or unknown function in PD pathogenesis and key pathways associated with disease progression. Among those are genotype-dependent alterations associated with synaptic plasticity and neurotransmission, as well as mitochondria-related genes and dysregulation of lipid metabolism. Age-dependent changes were among others observed in neuronal and synaptic activity, calcium homeostasis, and membrane receptor signaling pathways, many of which linked to G-protein coupled receptors. Most importantly, most changes occurred before neurodegeneration was detected in this model, which points to a sequence of gene expression events that may be relevant for disease initiation and progression. It is tempting to speculate that molecular changes similar to those changes observed in our model happen in midbrain dopaminergic neurons before they start to degenerate. In other words, we believe we have uncovered molecular changes that accompany the progression from preclinical to early PD.


Asunto(s)
Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Genotipo , Humanos , Ratones Transgénicos , Degeneración Nerviosa/patología , Enfermedad de Parkinson/genética , Sustancia Negra/patología , Transgenes , alfa-Sinucleína/genética
9.
Front Genet ; 11: 566734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173537

RESUMEN

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson's disease and schizophrenia. Genetic variation between individuals can affect the integrity and function of dopaminergic neurons but the DNA variants and molecular cascades modulating dopaminergic neurons and other cells types of ventral midbrain remain poorly defined. Three genetically diverse inbred mouse strains - C57BL/6J, A/J, and DBA/2J - differ significantly in their genomes (∼7 million variants), motor and cognitive behavior, and susceptibility to neurotoxins. To further dissect the underlying molecular networks responsible for these variable phenotypes, we generated RNA-seq and ChIP-seq data from ventral midbrains of the 3 mouse strains. We defined 1000-1200 transcripts that are differentially expressed among them. These widespread differences may be due to altered activity or expression of upstream transcription factors. Interestingly, transcription factors were significantly underrepresented among the differentially expressed genes, and only one transcription factor, Pttg1, showed significant differences between all three strains. The changes in Pttg1 expression were accompanied by consistent alterations in histone H3 lysine 4 trimethylation at Pttg1 transcription start site. The ventral midbrain transcriptome of 3-month-old C57BL/6J congenic Pttg1-/- mutants was only modestly altered, but shifted toward that of A/J and DBA/2J in 9-month-old mice. Principle component analysis (PCA) identified the genes underlying the transcriptome shift and deconvolution of these bulk RNA-seq changes using midbrain single cell RNA-seq data suggested that the changes were occurring in several different cell types, including neurons, oligodendrocytes, and astrocytes. Taken together, our results show that Pttg1 contributes to gene regulatory variation between mouse strains and influences mouse midbrain transcriptome during aging.

10.
Data Brief ; 25: 104130, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31294067

RESUMEN

Ubiquitin specific peptidase 9 (USP9) is a deubiquitinase encoded by a sex-linked gene with a Y-chromosomal form (USP9Y) and an X-chromosomal form (USP9X) that escapes X-inactivation. Since USP9 is a key regulatory gene with sex-linked expression in the human brain, the gene may be of interest for researchers studying molecular gender differences and ubiquitin signaling in the brain. To assess the downstream effects of knocking down USP9X and USP9Y on a transcriptome-wide scale, we have conducted microarray profiling experiments using the human DU145 prostate cancer cell culture model, after confirming the robust expression of both USP9X and USP9Y in this model. By designing shRNA constructs for the specific knockdown of USP9X and the joint knockdown of USP9X and USP9Y, we have compared gene expression changes in both knockdowns to control conditions to infer potential shared and X- or Y-form specific alterations. Here, we provide details of the corresponding microarray profiling data, which has been deposited in the Gene Expression Omnibus database (GEO series accession number GSE79376). A biological interpretation of the data in the context of a potential involvement of USP9 in Alzheimer's disease has previously been presented in Köglsberger et al. (2016). To facilitate the re-use and re-analysis of the data for other applications, e.g. the study of ubiquitin signaling and protein turnover control, and the regulation of molecular gender differences in the human brain and brain-related disorders, we provide a more in-depth discussion of the data properties, specifications and possible use cases.

11.
Neurobiol Aging ; 58: 30-33, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28697377

RESUMEN

Regulator of G-protein signaling 4 (RGS4), a member of the RGS family of proteins that inactivate G-proteins, has gained interest as a potential drug target for neurological disorders, such as epilepsy and Parkinson's disease (PD). In the case of PD, the main current options for alleviating motor symptoms are dopamine replacement therapies, which have limitations because of side effects and reduced effectiveness over the long term. Research on new nondopaminergic PD drug targets has indicated that inhibition of RGS4 could be an effective adjuvant treatment option. The effectiveness of RGS4 inhibition for an array of PD-linked functional and structural neuroprotection end points has not yet been demonstrated. Here, we use the 6-hydroxydopamine (6-OHDA) lesioning model of the nigrostriatal pathway in mice to address this question. We observe, using a battery of behavioral and pathological measures, that mice deficient for RGS4 are not protected from 6-OHDA-induced injury and show enhanced susceptibility in some measures of motor function. Our results suggest that inhibition of RGS4 as a nondopaminergic target for PD should be approached with caution.


Asunto(s)
Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Proteínas RGS , Animales , Conducta , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/metabolismo , Ratones , Terapia Molecular Dirigida , Neuroprotección , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/psicología , Proteínas RGS/antagonistas & inhibidores , Transducción de Señal , Sustancia Negra/fisiopatología
12.
Mol Neurobiol ; 54(10): 7979-7993, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27878758

RESUMEN

Public transcriptomic studies have shown that several genes display pronounced gender differences in their expression in the human brain, which may influence the manifestations and risk for neuronal disorders. Here, we apply a transcriptome-wide analysis to discover genes with gender-specific expression and significant alterations in public postmortem brain tissue from Alzheimer's disease (AD) patients compared to controls. We identify the sex-linked ubiquitin-specific peptidase 9 (USP9) as an outstanding candidate gene with highly significant expression differences between the genders and male-specific underexpression in AD. Since previous studies have shown that USP9 can modulate the phosphorylation of the AD-associated protein MAPT, we investigate functional associations between USP9 and MAPT in further detail. After observing a high positive correlation between the expression of USP9 and MAPT in the public transcriptomics data, we show that USP9 knockdown results in significantly decreased MAPT expression in a DU145 cell culture model and a concentration-dependent decrease for the MAPT orthologs mapta and maptb in a zebrafish model. From the analysis of microarray and qRT-PCR experiments for the knockdown in DU145 cells and prior knowledge from the literature, we derive a data-congruent model for a USP9-dependent regulatory mechanism modulating MAPT expression via BACH1 and SMAD4. Overall, the analyses suggest USP9 may contribute to molecular gender differences observed in tauopathies and provide a new target for intervention strategies to modulate MAPT expression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Tauopatías/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas tau/metabolismo , Animales , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Fosforilación , Pez Cebra
13.
Curr Protoc Mouse Biol ; 6(3): 333-342, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27584556

RESUMEN

Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc.


Asunto(s)
Encéfalo/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Ratones/metabolismo , Neurotransmisores/metabolismo , Aminoácidos/metabolismo , Animales , Monoaminas Biogénicas/metabolismo , Metabolómica/instrumentación
14.
Mov Disord ; 31(10): 1567-1570, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27324838

RESUMEN

BACKGROUND: The gut is proposed as a starting point of idiopathic IPD, but the presence of α-synuclein in the IPD colon mucosa is debated. OBJECTIVES: The objective of this study was to evaluate if α-synuclein in the colon mucosa can serve as a biomarker of IPD. METHODS: Immunohistochemistry was used to locate and quantify in a blinded approach α-synuclein in the mucosa from biopsies of the right and left colon in 19 IPD patients and 8 controls. RESULTS: Total α-synuclein was present in all but 1 IPD patients and in all controls; phosphorylated α-synuclein was present in all subjects. There was no intensity difference depending on disease status. Staining of total α-synuclein was stronger in the right colon (p = .04). CONCLUSIONS: Conventional immunohistochemistry α-synuclein staining in colon mucosal biopsies cannot serve as a biomarker of idiopathic PD. These findings do not contradict the assumption of disease starting in the colon, and a colon segment-specific risk for disease initiation can still be hypothesized. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Colon/metabolismo , Mucosa Intestinal/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Am J Pathol ; 185(6): 1699-712, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25934215

RESUMEN

Neurodegeneration is a multistep process characterized by a multitude of molecular entities and their interactions. Systems analyses, or omics approaches, have become an important tool in characterizing this process. Although RNA and protein profiling made their entry into this field a couple of decades ago, metabolite profiling is a more recent addition. The metabolome represents a large part or all metabolites in a tissue, and gives a snapshot of its physiology. By using gas chromatography coupled to mass spectrometry, we analyzed the metabolic profile of brain regions of the mouse, and found that each region is characterized by its own metabolic signature. We then analyzed the metabolic profile of the mouse brain after excitotoxic injury, a mechanism of neurodegeneration implicated in numerous neurological diseases. More important, we validated our findings by measuring, histologically and molecularly, actual neurodegeneration and glial response. We found that a specific global metabolic signature, best revealed by machine learning algorithms, rather than individual metabolites, was the most robust correlate of neuronal injury and the accompanying gliosis, and this signature could serve as a global biomarker for neurodegeneration. We also observed that brain lesioning induced several metabolites with neuroprotective properties. Our results deepen the understanding of metabolic changes accompanying neurodegeneration in disease models, and could help rapidly evaluate these changes in preclinical drug studies.


Asunto(s)
Encéfalo/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Kaínico/farmacología , Metaboloma/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Espectrometría de Masas , Ratones
16.
Mol Neurobiol ; 49(1): 88-102, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23832570

RESUMEN

Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map .


Asunto(s)
Biología Computacional/métodos , Red Nerviosa/metabolismo , Enfermedad de Parkinson/fisiopatología , Proteolisis , Transducción de Señal/fisiología , Animales , Biología Computacional/tendencias , Humanos , Mesencéfalo/metabolismo , Mesencéfalo/patología , Mesencéfalo/fisiopatología , Red Nerviosa/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
17.
PLoS One ; 8(8): e71634, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058406

RESUMEN

Alpha-synuclein protein is strongly implicated in the pathogenesis Parkinson's disease. Increased expression of α-synuclein due to genetic multiplication or point mutations leads to early onset disease. While α-synuclein is known to modulate membrane vesicle dynamics, it is not clear if this activity is involved in the pathogenic process or if measurable physiological effects of α-synuclein over-expression or mutation exist in vivo. Macrophages and microglia isolated from BAC α-synuclein transgenic mice, which overexpress α-synuclein under regulation of its own promoter, express α-synuclein and exhibit impaired cytokine release and phagocytosis. These processes were affected in vivo as well, both in peritoneal macrophages and microglia in the CNS. Extending these findings to humans, we found similar results with monocytes and fibroblasts isolated from idiopathic or familial Parkinson's disease patients compared to age-matched controls. In summary, this paper provides 1) a new animal model to measure α-synuclein dysfunction; 2) a cellular system to measure synchronized mobilization of α-synuclein and its functional interactions; 3) observations regarding a potential role for innate immune cell function in the development and progression of Parkinson's disease and other human synucleinopathies; 4) putative peripheral biomarkers to study and track these processes in human subjects. While altered neuronal function is a primary issue in PD, the widespread consequence of abnormal α-synuclein expression in other cell types, including immune cells, could play an important role in the neurodegenerative progression of PD and other synucleinopathies. Moreover, increased α-synuclein and altered phagocytosis may provide a useful biomarker for human PD.


Asunto(s)
Inmunidad Innata , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/inmunología , alfa-Sinucleína/inmunología , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Citocinas/inmunología , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Transgénicos , Microglía/inmunología , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fagocitosis , Regulación hacia Arriba , alfa-Sinucleína/genética
18.
Proc Natl Acad Sci U S A ; 110(19): 7820-5, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610393

RESUMEN

Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.


Asunto(s)
Regulación de la Expresión Génica , Hidroliasas/metabolismo , Macrófagos/metabolismo , Proteínas/metabolismo , Succinatos/metabolismo , Animales , Carboxiliasas , Catálisis , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Inflamación , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Mycobacterium tuberculosis/metabolismo , ARN Interferente Pequeño/metabolismo
19.
J Neurosci ; 32(8): 2696-702, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22357853

RESUMEN

Several anti-amyloid ß (Aß) antibodies are under evaluation for the treatment of Alzheimer's disease (AD). Clinical studies using the N-terminal-directed anti-Aß antibody bapineuzumab have demonstrated reduced brain PET-Pittsburg-B signals, suggesting the reduction of Aß plaques, and reduced levels of total and phosphorylated tau protein in the CSF of treated AD patients. Preclinical studies using 3D6 (the murine form of bapineuzumab) have demonstrated resolution of Aß plaque and vascular burdens, neuritic dystrophy, and preservation of synaptic density in the transgenic APP mouse models. In contrast, few studies have evaluated the direct interaction of this antibody with synaptotoxic soluble Aß species. In the current report, we demonstrated that 3D6 binds to soluble, synaptotoxic assemblies of Aß(1-42) and prevents multiple downstream functional consequences in rat hippocampal neurons including changes in glutamate AMPA receptor trafficking, AD-type tau phosphorylation, and loss of dendritic spines. In vivo, we further demonstrated that 3D6 prevents synaptic loss and acutely reverses the behavioral deficit in the contextual fear conditioning task in transgenic mouse models of AD, two endpoints thought to be linked to synaptotoxic soluble Aß moieties. Importantly C-terminal anti-Aß antibodies were ineffective on these endpoints. These results, taken with prior studies, suggest that N-terminal anti-Aß antibodies effectively interact with both soluble and insoluble forms of Aß and therefore appear particularly well suited for testing the Aß hypothesis of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/inmunología , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Epítopos/inmunología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Anticuerpos Neutralizantes , Síntomas Conductuales/tratamiento farmacológico , Síntomas Conductuales/etiología , Síntomas Conductuales/inmunología , Biotina/metabolismo , Células Cultivadas , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Espinas Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Embrión de Mamíferos , Epítopos/metabolismo , Miedo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/citología , Humanos , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/inmunología , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptidos/inmunología , Neuropéptidos/metabolismo , Fragmentos de Péptidos/inmunología , Fosforilación , Unión Proteica/inmunología , Estructura Secundaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores AMPA/metabolismo , Solubilidad , Proteína 1 de Transporte Vesicular de Glutamato/inmunología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
20.
PLoS One ; 6(4): e19338, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559417

RESUMEN

Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.


Asunto(s)
Inmunización Pasiva/métodos , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/terapia , alfa-Sinucleína/genética , Animales , Anticuerpos Monoclonales/metabolismo , Conducta Animal , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inmunohistoquímica/métodos , Enfermedad por Cuerpos de Lewy/inmunología , Lisosomas/metabolismo , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Degeneración Nerviosa/patología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...