Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 15(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049411

RESUMEN

Chronic alcohol use has been attributed to the development of malnutrition. This is in part due to the inhibitory effect of ethanol on the absorption of vital nutrients, including glucose, amino acids, lipids, water, vitamins, and minerals within the small intestine. Recent advances in research, along with new cutting-edge technologies, have advanced our understanding of the mechanism of ethanol's effect on intestinal nutrient absorption at the brush border membrane (BBM) of the small intestine. However, further studies are needed to delineate how ethanol consumption could have an impact on altered nutrient absorption under various disease conditions. Current research has elucidated the relationship of alcohol consumption on glucose, glutamine, vitamins B1 (thiamine), B2 (riboflavin), B9 (folate), C (ascorbic acid), selenium, iron, and zinc absorption within the small intestine. We conducted systematic computerized searches in PubMed using the following keywords: (1) "Alcohol effects on nutrient transport"; (2) "Alcohol mediated malabsorption of nutrients"; (3) "Alcohol effects on small intestinal nutrient transport"; and (4) "Alcohol mediated malabsorption of nutrients in small intestine". We included the relevant studies in this review. The main objective of this review is to marshal and analyze previously published research articles and discuss, in-depth, the understanding of ethanol's effect in modulating absorption of vital macro and micronutrients in health and disease conditions. This could ultimately provide great insights in the development of new therapeutic strategies to combat malnutrition associated with alcohol consumption.


Asunto(s)
Absorción Intestinal , Desnutrición , Humanos , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/metabolismo , Etanol/farmacología , Nutrientes , Vitaminas/farmacología , Glucosa/farmacología
2.
Nutrients ; 14(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35276983

RESUMEN

The gut microbiota is a complex community of microorganisms that has become a new focus of attention due to its association with numerous human diseases. Research over the last few decades has shown that the gut microbiota plays a considerable role in regulating intestinal homeostasis, and disruption to the microbial community has been linked to chronic disease conditions such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and obesity. Obesity has become a global pandemic, and its prevalence is increasing worldwide mostly in Western countries due to a sedentary lifestyle and consumption of high-fat/high-sugar diets. Obesity-mediated gut microbiota alterations have been associated with the development of IBD and IBD-induced CRC. This review highlights how obesity-associated dysbiosis can lead to the pathogenesis of IBD and CRC with a special focus on mechanisms of altered absorption of short-chain fatty acids (SCFAs).


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Enfermedad Crónica , Disbiosis/complicaciones , Microbioma Gastrointestinal/fisiología , Humanos , Enfermedades Inflamatorias del Intestino/complicaciones , Obesidad/complicaciones
3.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299188

RESUMEN

Na-K-ATPase provides a favorable transcellular Na gradient required for the functioning of Na-dependent nutrient transporters in intestinal epithelial cells. The primary metabolite for enterocytes is glutamine, which is absorbed via Na-glutamine co-transporter (SN2; SLC38A5) in intestinal crypt cells. SN2 activity is stimulated during chronic intestinal inflammation, at least in part, secondarily to the stimulation of Na-K-ATPase activity. Leukotriene D4 (LTD4) is known to be elevated in the mucosa during chronic enteritis, but the way in which it may regulate Na-K-ATPase is not known. In an in vitro model of rat intestinal epithelial cells (IEC-18), Na-K-ATPase activity was significantly stimulated by LTD4. As LTD4 mediates its action via Ca-dependent protein kinase C (PKC), Ca levels were measured and were found to be increased. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, also mediated stimulation of Na-K-ATPase like LTD4, while BAPTA-AM (Ca chelator) and calphostin-C (Cal-C; PKC inhibitor) prevented the stimulation of Na-K-ATPase activity. LTD4 caused a significant increase in mRNA and plasma membrane protein expression of Na-K-ATPase α1 and ß1 subunits, which was prevented by calphostin-C. These data demonstrate that LTD4 stimulates Na-K-ATPase in intestinal crypt cells secondarily to the transcriptional increase of Na-K-ATPase α1 and ß1 subunits, mediated via the Ca-activated PKC pathway.


Asunto(s)
Calcio/metabolismo , Enteritis/enzimología , Células Epiteliales/enzimología , Intestinos/enzimología , Leucotrieno D4/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Enteritis/tratamiento farmacológico , Enteritis/patología , Activación Enzimática , Células Epiteliales/efectos de los fármacos , Intestinos/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas
4.
J Nutr ; 150(4): 747-755, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769840

RESUMEN

BACKGROUND: Chronic alcohol use often leads to malnutrition. However, how the intestinal absorption of nutrients such as glucose may be affected during moderate ethanol use has not been investigated. Glucose is absorbed via sodium (Na)-dependent glucose co-transport (SGLT1; SLC5A1) along the brush border membrane (BBM) of intestinal absorptive villus cells. OBJECTIVE: The aim of this study was to investigate how moderate alcohol consumption affects the absorption of glucose via SGLT1. METHODS: Intestinal epithelial cells (IEC-18; rat) were exposed to 8.64 mM ethanol over 1, 3, 6, and 12 h. Rats (16-wk-old, male, Sprague-Dawley) were administered 2 g/kg ethanol over 1, 3, and 6 h. Na-dependent 3H-O-methyl-d-glucose uptake was measured to assess SGLT1 activity. Na-K-ATPase activity was measured as a function of inorganic phosphate release. Protein expression was analyzed by Western blot analysis and immunohistochemical staining. RESULTS: Ethanol significantly decreased Na-dependent glucose absorption in enterocytes in vitro (ethanol treatment: 48.4% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 60.0% of controls at 1 h; P < 0.01). Na-K-ATPase activity was significantly inhibited in vitro (ethanol treatment: 36.9% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 42.1% of controls at 1 h; P < 0.01). Kinetic studies showed that the mechanism of inhibition of Na-glucose co-transport was secondary to a decrease in the affinity (1/Km) of the co-transporter for glucose both in vitro and in vivo. Western blots and immunohistochemistry further demonstrated unaltered amounts of SGLT1 after ethanol treatment. CONCLUSIONS: Moderate ethanol significantly decreases glucose absorption in IEC-18 cells and in villus cells of Sprague-Dawley rats. The inhibition of SGLT1 is secondary to an altered Na gradient at the cellular level and secondary to diminished affinity of the co-transporter for glucose at the protein level in the BBM. These observations may, at least in part, explain 1 possible mechanism of the onset of malnutrition associated with alcohol consumption.


Asunto(s)
Células Epiteliales/metabolismo , Etanol/administración & dosificación , Glucosa/metabolismo , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Animales , Línea Celular , Células Epiteliales/química , Células Epiteliales/efectos de los fármacos , Intestino Delgado/ultraestructura , Masculino , Microvellosidades/efectos de los fármacos , Microvellosidades/metabolismo , Ratas , Ratas Sprague-Dawley , Sodio/farmacología , Transportador 1 de Sodio-Glucosa/análisis , Transportador 1 de Sodio-Glucosa/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
5.
Nutrients ; 11(10)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635319

RESUMEN

Malnutrition is present in chronic alcoholics. However, how moderate alcohol consumption affects the absorption of nutrients like glutamine has not been investigated. Glutamine, an amino acid, is vital to gastrointestinal health. Glutamine is absorbed via sodium-dependent glutamine co-transport (B0AT1; SLC6A19) along the brush border membrane of absorptive villus cells. Rat intestinal epithelial cells (IEC-18) and sixteen-week-old Sprague Dawley rats were administered the equivalent of a 0.04% blood alcohol content of ethanol (8.64 mM; 2 g/kg) to investigate the effect of moderate alcohol on sodium-glutamine co-transport. Sodium-dependent 3H-glutamine uptakes were performed to measure B0AT1 activity. Inorganic phosphate was measured as a function of Na-K-ATPase activity. Protein expression was analyzed by immunohistochemical and Western blot analysis. Ethanol significantly inhibited sodium-dependent glutamine absorption and Na-K-ATPase activity in enterocytes in vitro and ex vivo. Kinetic studies suggested that the mechanism of inhibition was due to decreased maximal rate of uptake (Vmax) of the B0AT1 co-transporter, corresponding to decreased B0AT1 protein expression and secondary to an inhibited sodium-gradient at the cellular level in vitro and ex vivo. In all, moderate ethanol significantly inhibited glutamine absorption at the level of decreased B0AT1 expression at the brush border membrane and a reduced sodium gradient, which may contribute to malnutrition present in chronic alcoholics.


Asunto(s)
Consumo de Bebidas Alcohólicas , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Células Epiteliales/efectos de los fármacos , Etanol/farmacología , Mucosa Intestinal/citología , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Línea Celular , Etanol/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
6.
FASEB J ; 33(8): 9323-9333, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31107610

RESUMEN

During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.


Asunto(s)
Glucosa/metabolismo , Intestinos/citología , Microvellosidades/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Cloruro de Sodio/metabolismo , Animales , Western Blotting , Línea Celular , Técnica del Anticuerpo Fluorescente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Absorción Intestinal/fisiología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Interferencia de ARN , Ratas , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA