Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981683

RESUMEN

Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Likely owing to the unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific ER proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the easily expandable cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.


Asunto(s)
Colágeno Tipo II , Retículo Endoplásmico , Procolágeno , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Humanos , Procolágeno/metabolismo , Colágeno Tipo II/metabolismo , Mutación , Células Madre Pluripotentes Inducidas/metabolismo , Cartílago/metabolismo , Cartílago/patología , Pliegue de Proteína , Artritis/metabolismo , Artritis/genética , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/patología , Animales , Condrocitos/metabolismo
2.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-37905055

RESUMEN

Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Owing to unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.

3.
Sci Adv ; 9(32): eadg9781, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566656

RESUMEN

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.


Asunto(s)
Células Endoteliales , Mecanotransducción Celular , Ratones , Animales , Mecanotransducción Celular/fisiología , Ingeniería de Tejidos/métodos , Morfogénesis , Diferenciación Celular , Matriz Extracelular
4.
Nucleic Acids Res ; 51(6): e31, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36715334

RESUMEN

Targeted mutagenesis mediated by nucleotide base deaminase-T7 RNA polymerase fusions has recently emerged as a novel and broadly useful strategy to power genetic diversification in the context of in vivo directed evolution campaigns. Here, we expand the utility of this approach by introducing a highly active adenosine deaminase-T7 RNA polymerase fusion protein (eMutaT7A→G), resulting in higher mutation frequencies to enable more rapid directed evolution. We also assess the benefits and potential downsides of using this more active mutator. We go on to show in Escherichia coli that adenosine deaminase-bearing mutators (MutaT7A→G or eMutaT7A→G) can be employed in tandem with a cytidine deaminase-bearing mutator (MutaT7C→T) to introduce all possible transition mutations simultaneously. We illustrate the efficacy of this in vivo mutagenesis approach by exploring mutational routes to antibacterial drug resistance. This work sets the stage for general application of optimized MutaT7 tools able to induce all types of transition mutations during in vivo directed evolution campaigns across diverse organisms.


Asunto(s)
Mutagénesis , Adenosina Desaminasa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Técnicas Genéticas
5.
Circ Res ; 131(12): 980-1000, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36367103

RESUMEN

BACKGROUND: RBPs (RNA-binding proteins) perform indispensable functions in the post-transcriptional regulation of gene expression. Numerous RBPs have been implicated in cardiac development or physiology based on gene knockout studies and the identification of pathogenic RBP gene mutations in monogenic heart disorders. The discovery and characterization of additional RBPs performing indispensable functions in the heart will advance basic and translational cardiovascular research. METHODS: We performed a differential expression screen in zebrafish embryos to identify genes enriched in nkx2.5-positive cardiomyocytes or cardiopharyngeal progenitors compared to nkx2.5-negative cells from the same embryos. We investigated the myocardial-enriched gene RNA-binding protein with multiple splicing (variants) 2 [RBPMS2)] by generating and characterizing rbpms2 knockout zebrafish and human cardiomyocytes derived from RBPMS2-deficient induced pluripotent stem cells. RESULTS: We identified 1848 genes enriched in the nkx2.5-positive population. Among the most highly enriched genes, most with well-established functions in the heart, we discovered the ohnologs rbpms2a and rbpms2b, which encode an evolutionarily conserved RBP. Rbpms2 localizes selectively to cardiomyocytes during zebrafish heart development and strong cardiomyocyte expression persists into adulthood. Rbpms2-deficient embryos suffer from early cardiac dysfunction characterized by reduced ejection fraction. The functional deficit is accompanied by myofibril disarray, altered calcium handling, and differential alternative splicing events in mutant cardiomyocytes. These phenotypes are also observed in RBPMS2-deficient human cardiomyocytes, indicative of conserved molecular and cellular function. RNA-sequencing and comparative analysis of genes mis-spliced in RBPMS2-deficient zebrafish and human cardiomyocytes uncovered a conserved network of 29 ortholog pairs that require RBPMS2 for alternative splicing regulation, including RBFOX2, SLC8A1, and MYBPC3. CONCLUSIONS: Our study identifies RBPMS2 as a conserved regulator of alternative splicing, myofibrillar organization, and calcium handling in zebrafish and human cardiomyocytes.


Asunto(s)
Calcio , Miocardio , Proteínas de Unión al ARN , Proteínas de Pez Cebra , Animales , Humanos , Calcio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Cell Host Microbe ; 30(7): 1048-1060.e5, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35443155

RESUMEN

Malaria-causing Plasmodium vivax parasites can linger in the human liver for weeks to years and reactivate to cause recurrent blood-stage infection. Although they are an important target for malaria eradication, little is known about the molecular features of replicative and non-replicative intracellular liver-stage parasites and their host cell dependence. Here, we leverage a bioengineered human microliver platform to culture patient-derived P. vivax parasites for transcriptional profiling. Coupling enrichment strategies with bulk and single-cell analyses, we capture both parasite and host transcripts in individual hepatocytes throughout the course of infection. We define host- and state-dependent transcriptional signatures and identify unappreciated populations of replicative and non-replicative parasites that share features with sexual transmissive forms. We find that infection suppresses the transcription of key hepatocyte function genes and elicits an anti-parasite innate immune response. Our work provides a foundation for understanding host-parasite interactions and reveals insights into the biology of P. vivax dormancy and transmission.


Asunto(s)
Malaria Vivax , Malaria , Hepatocitos/parasitología , Humanos , Hígado/parasitología , Malaria/parasitología , Malaria Vivax/parasitología , Plasmodium vivax/genética
7.
PLoS Biol ; 20(2): e3001569, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180219

RESUMEN

The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.


Asunto(s)
Infecciones por VIH , Proteostasis , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Infecciones por VIH/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Respuesta de Proteína Desplegada
8.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35098309

RESUMEN

Aortic root aneurysm is a common cause of morbidity and mortality in Loeys-Dietz and Marfan syndromes, where perturbations in transforming growth factor beta (TGFß) signaling play a causal or contributory role, respectively. Despite the advantages of cross-species disease modeling, animal models of aortic root aneurysm are largely restricted to genetically engineered mice. Here, we report that zebrafish devoid of the genes encoding latent-transforming growth factor beta-binding protein 1 and 3 (ltbp1 and ltbp3, respectively) develop rapid and severe aneurysm of the outflow tract (OFT), the aortic root equivalent. Similar to syndromic aneurysm tissue, the distended OFTs display evidence for paradoxical hyperactivated TGFß signaling. RNA-sequencing revealed significant overlap between the molecular signatures of disease tissue from mutant zebrafish and a mouse model of Marfan syndrome. Moreover, chemical inhibition of TGFß signaling in wild-type animals phenocopied mutants but chemical activation did not, demonstrating that TGFß signaling is protective against aneurysm. Human relevance is supported by recent studies implicating genetic lesions in LTBP3 and, potentially, LTBP1 as heritable causes of aortic root aneurysm. Ultimately, our data demonstrate that zebrafish can now be leveraged to interrogate thoracic aneurysmal disease and identify novel lead compounds through small-molecule suppressor screens. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aneurisma de la Aorta Torácica , Proteínas de Unión a TGF-beta Latente/metabolismo , Síndrome de Marfan , Proteínas de Pez Cebra/metabolismo , Animales , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/metabolismo , Aneurisma de la Aorta Torácica/patología , Dilatación , Humanos , Larva/metabolismo , Proteínas de Unión a TGF-beta Latente/genética , Síndrome de Marfan/patología , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/metabolismo
9.
J Biomol Tech ; 31(4): 151-156, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33100919

RESUMEN

Advances in next-generation sequencing technologies have allowed RNA sequencing to become an increasingly time efficient, cost-effective, and accessible tool for genomic research. We present here an automated and miniaturized workflow for RNA library preparation that minimizes reagent usage and processing time required per sample to generate Illumina compatible libraries for sequencing. The reduced-volume libraries show similar behavior to full-scale libraries with comparable numbers of genes detected and reproducible clustering of samples.


Asunto(s)
Automatización/métodos , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , RNA-Seq/métodos , Genómica , ARN/aislamiento & purificación , Reproducibilidad de los Resultados , Flujo de Trabajo
10.
ACS Infect Dis ; 6(7): 1659-1666, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32502335

RESUMEN

Host protein folding stress responses can play important roles in RNA virus replication and evolution. Prior work suggested a complicated interplay between the cytosolic proteostasis stress response, controlled by the transcriptional master regulator heat shock factor 1 (HSF1), and human immunodeficiency virus-1 (HIV-1). We sought to uncouple HSF1 transcription factor activity from cytotoxic proteostasis stress and thereby better elucidate the proposed role(s) of HSF1 in the HIV-1 lifecycle. To achieve this objective, we used chemical genetic, stress-independent control of HSF1 activity to establish whether and how HSF1 influences HIV-1 replication. Stress-independent HSF1 induction decreased both the total quantity and infectivity of HIV-1 virions. Moreover, HIV-1 was unable to escape HSF1-mediated restriction over the course of several serial passages. These results clarify the interplay between the host's heat shock response and HIV-1 infection and motivate continued investigation of chaperones as potential antiviral therapeutic targets.


Asunto(s)
Respuesta al Choque Térmico , Proteostasis , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares , Replicación Viral
11.
Cell Syst ; 10(3): 223-239.e9, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32191873

RESUMEN

Although the association between the microbiome and IBD and liver diseases is known, the cause and effect remain elusive. By connecting human microphysiological systems of the gut, liver, and circulating Treg and Th17 cells, we created a multi-organ model of ulcerative colitis (UC) ex vivo. The approach shows microbiome-derived short-chain fatty acids (SCFAs) to either improve or worsen UC severity, depending on the involvement of effector CD4 T cells. Using multiomics, we found SCFAs increased production of ketone bodies, glycolysis, and lipogenesis, while markedly reducing innate immune activation of the UC gut. However, during acute T cell-mediated inflammation, SCFAs exacerbated CD4+ T cell-effector function, partially through metabolic reprograming, leading to gut barrier disruption and hepatic injury. These paradoxical findings underscore the emerging utility of human physiomimetic technology in combination with systems immunology to study causality and the fundamental entanglement of immunity, metabolism, and tissue homeostasis.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Tracto Gastrointestinal/metabolismo , Hígado/metabolismo , Biomimética/métodos , Microbioma Gastrointestinal/fisiología , Homeostasis , Humanos , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/fisiopatología , Mucosa Intestinal/metabolismo , Modelos Biológicos , Linfocitos T Reguladores/inmunología , Células Th17/inmunología
12.
Nat Neurosci ; 22(10): 1696-1708, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31551601

RESUMEN

The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.


Asunto(s)
Envejecimiento/genética , Encéfalo/crecimiento & desarrollo , Neuronas/fisiología , Análisis de la Célula Individual , Transcriptoma/genética , Animales , Encéfalo/citología , Comunicación Celular/genética , Linaje de la Célula/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Ribosomas/genética
13.
Cell ; 178(5): 1115-1131.e15, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442404

RESUMEN

Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (ßOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes ßOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous ßOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, ßOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through ßOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of ßOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.


Asunto(s)
Dieta Alta en Grasa , Cuerpos Cetónicos/metabolismo , Células Madre/metabolismo , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/farmacología , Anciano de 80 o más Años , Animales , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Hidroximetilglutaril-CoA Sintasa/deficiencia , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Intestinos/citología , Intestinos/patología , Masculino , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Adulto Joven
14.
Development ; 146(19)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31427288

RESUMEN

Deciphering the genetic and epigenetic regulation of cardiomyocyte proliferation in organisms that are capable of robust cardiac renewal, such as zebrafish, represents an attractive inroad towards regenerating the human heart. Using integrated high-throughput transcriptional and chromatin analyses, we have identified a strong association between H3K27me3 deposition and reduced sarcomere and cytoskeletal gene expression in proliferative cardiomyocytes following cardiac injury in zebrafish. To move beyond an association, we generated an inducible transgenic strain expressing a mutant version of histone 3, H3.3K27M, that inhibits H3K27me3 catalysis in cardiomyocytes during the regenerative window. Hearts comprising H3.3K27M-expressing cardiomyocytes fail to regenerate, with wound edge cells showing heightened expression of structural genes and prominent sarcomeres. Although cell cycle re-entry was unperturbed, cytokinesis and wound invasion were significantly compromised. Collectively, our study identifies H3K27me3-mediated silencing of structural genes as requisite for zebrafish heart regeneration and suggests that repression of similar structural components in the border zone of an infarcted human heart might improve its regenerative capacity.


Asunto(s)
Silenciador del Gen , Corazón/fisiología , Histonas/metabolismo , Lisina/metabolismo , Regeneración/fisiología , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Proliferación Celular , Citocinesis , Citoesqueleto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Metilación , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo
15.
Elife ; 82019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31033440

RESUMEN

Iron and heme play central roles in the production of red blood cells, but the underlying mechanisms remain incompletely understood. Heme-regulated eIF2α kinase (HRI) controls translation by phosphorylating eIF2α. Here, we investigate the global impact of iron, heme, and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. We validate the known role of HRI-mediated translational stimulation of integratedstressresponse mRNAs during iron deficiency in vivo. Moreover, we find that the translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins is substantially repressed by HRI during iron deficiency, causing a decrease in cytosolic and mitochondrial protein synthesis. The absence of HRI during iron deficiency elicits a prominent cytoplasmic unfolded protein response and impairs mitochondrial respiration. Importantly, ATF4 target genes are activated during iron deficiency to maintain mitochondrial function and to enable erythroid differentiation. We further identify GRB10 as a previously unappreciated regulator of terminal erythropoiesis.


Asunto(s)
Eritropoyesis/fisiología , Hemo/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Proteostasis/fisiología , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Anemia Ferropénica , Animales , Diferenciación Celular , Eritroblastos , Factor 2 Eucariótico de Iniciación/metabolismo , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Ratones , Ratones Noqueados , Oxígeno/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Ribosómicas , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
16.
Cell Chem Biol ; 26(5): 711-723.e14, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30880155

RESUMEN

The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lactamas/farmacología , Compuestos Policíclicos/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular , Dimerización , Modelos Animales de Enfermedad , Humanos , Lactamas/síntesis química , Lactamas/uso terapéutico , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/tratamiento farmacológico , Compuestos Policíclicos/síntesis química , Compuestos Policíclicos/uso terapéutico , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Proteínas Represoras/química , Proteínas Represoras/genética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Rayos Ultravioleta
17.
PLoS Genet ; 15(2): e1007830, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30789901

RESUMEN

The nematode Caenorhabditis elegans has emerged as a genetically tractable animal host in which to study evolutionarily conserved mechanisms of innate immune signaling. We previously showed that the PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway regulates innate immunity of C. elegans through phosphorylation of the CREB/ATF bZIP transcription factor, ATF-7. Here, we have undertaken a genomic analysis of the transcriptional response of C. elegans to infection by Pseudomonas aeruginosa, combining genome-wide expression analysis by RNA-seq with ATF-7 chromatin immunoprecipitation followed by sequencing (ChIP-Seq). We observe that PMK-1-ATF-7 activity regulates a majority of all genes induced by pathogen infection, and observe ATF-7 occupancy in regulatory regions of pathogen-induced genes in a PMK-1-dependent manner. Moreover, functional analysis of a subset of these ATF-7-regulated pathogen-induced target genes supports a direct role for this transcriptional response in host defense. The genome-wide regulation through PMK-1- ATF-7 signaling reveals a striking level of control over the innate immune response to infection through a single transcriptional regulator.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/microbiología , Pseudomonas aeruginosa/inmunología , Animales , Caenorhabditis elegans/genética , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Inmunidad Innata , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Análisis de Secuencia de ARN
18.
mBio ; 10(1)2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622189

RESUMEN

Upon invasion of Lewis rat macrophages, Toxoplasma rapidly induces programmed cell death (pyroptosis), which prevents Toxoplasma replication, possibly explaining the resistance of the Lewis rat to Toxoplasma Using a chemical mutagenesis screen, we identified Toxoplasma mutants that no longer induced pyroptosis. Whole-genome sequencing led to the identification of three Toxoplasma parasitophorous vacuole-localized dense granule proteins, GRA35, GRA42, and GRA43, that are individually required for induction of Lewis rat macrophage pyroptosis. Macrophage infection with Δgra35, Δgra42, and Δgra43 parasites led to greatly reduced cell death rates and enhanced parasite replication. Lewis rat macrophages infected with parasites containing a single, double, or triple deletion of these GRAs showed similar levels of cell viability, suggesting that the three GRAs function in the same pathway. Deletion of GRA42 or GRA43 resulted in GRA35 (and other GRAs) being retained inside the parasitophorous vacuole instead of being localized to the parasitophorous vacuole membrane. Despite having greatly enhanced replication in Lewis rat macrophages in vitro, Δgra35, Δgra42, and Δgra43 parasites did not establish a chronic infection in Lewis rats. Toxoplasma did not induce F344 rat macrophage pyroptosis, but F344 rats infected with Δgra35, Δgra42, and Δgra43 parasites had reduced cyst numbers. Thus, these GRAs determined parasite in vivo fitness in F344 rats. Overall, our data suggest that these three Toxoplasma dense granule proteins play a critical role in establishing a chronic infection in vivo, independently of their role in mediating macrophage pyroptosis, likely due to their importance in regulating protein localization to the parasitophorous vacuole membrane.IMPORTANCE Inflammasomes are major components of the innate immune system and are responsible for detecting various microbial and environmental danger signals. Upon invasion of Lewis rat macrophages, the parasite rapidly activates the NLRP1 inflammasome, resulting in pyroptosis and elimination of the parasite's replication niche. The work reported here revealed that Toxoplasma GRA35, GRA42, and GRA43 are required for induction of Lewis rat macrophage pyroptosis. GRA42 and GRA43 mediate the correct localization of other GRAs, including GRA35, to the parasitophorous vacuole membrane. These three GRAs were also found to be important for parasite in vivo fitness in a Toxoplasma-susceptible rat strain, independently of their role in NLRP1 inflammasome activation, suggesting that they perform other important functions. Thus, this study identified three GRAs that mediate the induction of Lewis rat macrophage pyroptosis and are required for pathogenesis of the parasite.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/parasitología , Proteínas Protozoarias/metabolismo , Piroptosis , Toxoplasma/inmunología , Animales , Supervivencia Celular , Células Cultivadas , Análisis Mutacional de ADN , Eliminación de Gen , Mutagénesis , Proteínas Protozoarias/genética , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Toxoplasma/genética , Secuenciación Completa del Genoma
19.
iScience ; 9: 101-119, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30388704

RESUMEN

To gain insights into the molecular mechanisms and pathways involved in the activation of γ-herpesvirus (MHV68)-specific T cell receptor transnuclear (TN) CD8+ T cells, we performed a comprehensive transcriptomic analysis. Upon viral infection, we observed differential expression of several thousand transcripts encompassing various networks and pathways in activated TN cells compared with their naive counterparts. Activated cells highly upregulated galectin-3. We therefore explored the role of galectin-3 in influencing anti-MHV68 immunity. Galectin-3 was recruited at the immunological synapse during activation of CD8+ T cells and helped constrain their activation. The localization of galectin-3 to immune synapse was evident during the activation of both naive and memory CD8+ T cells. Galectin-3 knockout mice mounted a stronger MHV68-specific CD8+ T cell response to the majority of viral epitopes and led to better viral control. Targeting intracellular galectin-3 in CD8+ T cells may therefore serve to enhance response to efficiently control infections.

20.
J Am Chem Soc ; 140(51): 18093-18103, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30427676

RESUMEN

The discovery and optimization of biomolecules that reliably function in metazoan cells is imperative for both the study of basic biology and the treatment of disease. We describe the development, characterization, and proof-of-concept application of a platform for directed evolution of diverse biomolecules of interest (BOIs) directly in human cells. The platform relies on a custom-designed adenovirus variant lacking multiple genes, including the essential DNA polymerase and protease genes, features that allow us to evolve BOIs encoded by genes as large as 7 kb while attaining the mutation rates and enforcing the selection pressure required for successful directed evolution. High mutagenesis rates are continuously attained by trans-complementation of a newly engineered, highly error-prone form of the adenoviral polymerase. Selection pressure that couples desired BOI functions to adenoviral propagation is achieved by linking the functionality of the encoded BOI to the production of adenoviral protease activity by the human cell. The dynamic range for directed evolution can be enhanced to several orders of magnitude via application of a small-molecule adenoviral protease inhibitor to modulate selection pressure during directed evolution experiments. This platform makes it possible, in principle, to evolve any biomolecule activity that can be coupled to adenoviral protease expression or activation by simply serially passaging adenoviral populations carrying the BOI. As proof-of-concept, we use the platform to evolve, directly in the human cell environment, several transcription factor variants that maintain high levels of function while gaining resistance to a small-molecule inhibitor. We anticipate that this platform will substantially expand the repertoire of biomolecules that can be reliably and robustly engineered for both research and therapeutic applications in metazoan systems.


Asunto(s)
Evolución Molecular Dirigida/métodos , Factores de Transcripción/metabolismo , Adenoviridae/genética , Fagos de Bacillus/enzimología , ADN Polimerasa Dirigida por ADN/genética , Doxorrubicina/farmacología , Resistencia a Medicamentos/genética , Células HEK293 , Humanos , Integrasas/genética , Leucina-ARNt Ligasa/genética , Mutagénesis , Péptido Hidrolasas/genética , Prueba de Estudio Conceptual , Ingeniería de Proteínas , Factores de Transcripción/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA