Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genomics ; 114(4): 110395, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671870

RESUMEN

Heifer early calving (HC) plays a key role in beef cattle herds' economic sustainability and profitability by reducing production costs and generation intervals. However, the genetic basis of HC in Nelore heifers at different ages remains to be well understood. In this study, we aimed to perform a multi-trait weighted single-step genome-wide association (MT w-ssGWAS) to uncover the genetic mechanism involved in HC at 24 (HC24), 26 (HC26), 28 (HC28), and 30 (HC30) months of age in Nelore heifers. The MT w-ssGWAS pointed out four shared windows regions for HC24, HC26, HC28, and HC30 on BTA 5, 6, 14, and 16, explaining a larger proportion of genetic variation from 9.2% for HC30 to 10.6% for HC28. The shared regions harbored candidate genes related with the major gatekeeper for early puberty onset by controlling metabolic aspects related to homeostasis, reproductive, and growth (IGF1, PARPBP, PMCH, GNRHR, LYN, TMEM68, PLAG1, CHCHD7, KISS1, GOLT1A, and PPP1R15B). The MT w-ssGWAS and pathway analysis highlighted differences in physiological processes that support complex interactions between the gonadotropic axes, growth aspects, and sexual precocity in Nelore heifers, providing useful information for genetic improvement and management strategies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Reproducción , Animales , Bovinos/genética , Femenino , Genoma , Estudio de Asociación del Genoma Completo/veterinaria , Fenotipo , Reproducción/genética
2.
Animals (Basel) ; 11(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34573664

RESUMEN

In this study, we chose 17 worldwide sheep populations of eight breeds, which were intensively selected for different purposes (meat, milk, or wool), or locally-adapted breeds, in order to identify and characterize factors impacting the detection of runs of homozygosity (ROH) and heterozygosity-rich regions (HRRs) in sheep. We also applied a business intelligence (BI) tool to integrate and visualize outputs from complementary analyses. We observed a prevalence of short ROH, and a clear distinction between the ROH profiles across populations. The visualizations showed a fragmentation of medium and long ROH segments. Furthermore, we tested different scenarios for the detection of HRR and evaluated the impact of the detection parameters used. Our findings suggest that HRRs are small and frequent in the sheep genome; however, further studies with higher density SNP chips and different detection methods are suggested for future research. We also defined ROH and HRR islands and identified common regions across the populations, where genes related to a variety of traits were reported, such as body size, muscle development, and brain functions. These results indicate that such regions are associated with many traits, and thus were under selective pressure in sheep breeds raised for different purposes. Interestingly, many candidate genes detected within the HRR islands were associated with brain integrity. We also observed a strong association of high linkage disequilibrium pattern with ROH compared with HRR, despite the fact that many regions in linkage disequilibrium were not located in ROH regions.

3.
BMC Genet ; 18(1): 6, 2017 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-28109261

RESUMEN

BACKGROUND: Knowledge on the levels of linkage disequilibrium (LD) across the genome, persistence of gametic phase between breed pairs, genetic diversity and population structure are important parameters for the successful implementation of genomic selection. Therefore, the objectives of this study were to investigate these parameters in order to assess the feasibility of a multi-herd and multi-breed training population for genomic selection in important purebred and crossbred pig populations in Canada. A total of 3,057 animals, representative of the national populations, were genotyped with the Illumina Porcine SNP60 BeadChip (62,163 markers). RESULTS: The overall LD (r 2) between adjacent SNPs was 0.49, 0.38, 0.40 and 0.31 for Duroc, Landrace, Yorkshire and Crossbred (Landrace x Yorkshire) populations, respectively. The highest correlation of phase (r) across breeds was observed between Crossbred animals and either Landrace or Yorkshire breeds, in which r was approximately 0.80 at 1 Mbp of distance. Landrace and Yorkshire breeds presented r ≥ 0.80 in distances up to 0.1 Mbp, while Duroc breed showed r ≥ 0.80 for distances up to 0.03 Mbp with all other populations. The persistence of phase across herds were strong for all breeds, with r ≥ 0.80 up to 1.81 Mbp for Yorkshire, 1.20 Mbp for Duroc, and 0.70 Mbp for Landrace. The first two principal components clearly discriminate all the breeds. Similar levels of genetic diversity were observed among all breed groups. The current effective population size was equal to 75 for Duroc and 92 for both Landrace and Yorkshire. CONCLUSIONS: An overview of population structure, LD decay, demographic history and inbreeding of important pig breeds in Canada was presented. The rate of LD decay for the three Canadian pig breeds indicates that genomic selection can be successfully implemented within breeds with the current 60 K SNP panel. The use of a multi-breed training population involving Landrace and Yorkshire to estimate the genomic breeding values of crossbred animals (Landrace × Yorkshire) should be further evaluated. The lower correlation of phase at short distances between Duroc and the other breeds indicates that a denser panel may be required for the use of a multi-breed training population including Duroc.


Asunto(s)
Variación Genética , Desequilibrio de Ligamiento , Porcinos/genética , Animales , Cruzamiento
4.
BMC Genet ; 16: 99, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26250698

RESUMEN

BACKGROUND: Genotype imputation has been used to increase genomic information, allow more animals in genome-wide analyses, and reduce genotyping costs. In Brazilian beef cattle production, many animals are resulting from crossbreeding and such an event may alter linkage disequilibrium patterns. Thus, the challenge is to obtain accurately imputed genotypes in crossbred animals. The objective of this study was to evaluate the best fitting and most accurate imputation strategy on the MA genetic group (the progeny of a Charolais sire mated with crossbred Canchim X Zebu cows) and Canchim cattle. The data set contained 400 animals (born between 1999 and 2005) genotyped with the Illumina BovineHD panel. Imputation accuracy of genotypes from the Illumina-Bovine3K (3K), Illumina-BovineLD (6K), GeneSeek-Genomic-Profiler (GGP) BeefLD (GGP9K), GGP-IndicusLD (GGP20Ki), Illumina-BovineSNP50 (50K), GGP-IndicusHD (GGP75Ki), and GGP-BeefHD (GGP80K) to Illumina-BovineHD (HD) SNP panels were investigated. Seven scenarios for reference and target populations were tested; the animals were grouped according with birth year (S1), genetic groups (S2 and S3), genetic groups and birth year (S4 and S5), gender (S6), and gender and birth year (S7). Analyses were performed using FImpute and BEAGLE software and computation run-time was recorded. Genotype imputation accuracy was measured by concordance rate (CR) and allelic R square (R(2)). RESULTS: The highest imputation accuracy scenario consisted of a reference population with males and females and a target population with young females. Among the SNP panels in the tested scenarios, from the 50K, GGP75Ki and GGP80K were the most adequate to impute to HD in Canchim cattle. FImpute reduced computation run-time to impute genotypes from 20 to 100 times when compared to BEAGLE. CONCLUSION: The genotyping panels possessing at least 50 thousands markers are suitable for genotype imputation to HD with acceptable accuracy. The FImpute algorithm demonstrated a higher efficiency of imputed markers, especially in lower density panels. These considerations may assist to increase genotypic information, reduce genotyping costs, and aid in genomic selection evaluations in crossbred animals.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genotipo , Carne Roja , Alelos , Animales , Brasil , Cruzamiento , Bovinos , Cruzamientos Genéticos , Femenino , Desequilibrio de Ligamiento , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
5.
PLoS One ; 9(4): e94802, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24733441

RESUMEN

Studies are being conducted on the applicability of genomic data to improve the accuracy of the selection process in livestock, and genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to identify genomic regions and genes that play roles in birth weight (BW), weaning weight adjusted for 210 days of age (WW), and long-yearling weight adjusted for 420 days of age (LYW) in Canchim cattle. GWAS were performed by means of the Generalized Quasi-Likelihood Score (GQLS) method using genotypes from the BovineHD BeadChip and estimated breeding values for BW, WW, and LYW. Data consisted of 285 animals from the Canchim breed and 114 from the MA genetic group (derived from crossings between Charolais sires and ½ Canchim + ½ Zebu dams). After applying a false discovery rate correction at a 10% significance level, a total of 4, 12, and 10 SNPs were significantly associated with BW, WW, and LYW, respectively. These SNPs were surveyed to their corresponding genes or to surrounding genes within a distance of 250 kb. The genes DPP6 (dipeptidyl-peptidase 6) and CLEC3B (C-type lectin domain family 3 member B) were highlighted, considering its functions on the development of the brain and skeletal system, respectively. The GQLS method identified regions on chromosome associated with birth weight, weaning weight, and long-yearling weight in Canchim and MA animals. New candidate regions for body weight traits were detected and some of them have interesting biological functions, of which most have not been previously reported. The observation of QTL reports for body weight traits, covering areas surrounding the genes (SNPs) herein identified provides more evidence for these associations. Future studies targeting these areas could provide further knowledge to uncover the genetic architecture underlying growth traits in Canchim cattle.


Asunto(s)
Bovinos/crecimiento & desarrollo , Bovinos/genética , Estudio de Asociación del Genoma Completo , Carácter Cuantitativo Heredable , Animales , Peso al Nacer/genética , Brasil , Cromosomas de los Mamíferos/genética , Genotipo , Funciones de Verosimilitud , Polimorfismo de Nucleótido Simple/genética , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...