Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 11(16): 9421-9425, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35423455

RESUMEN

We have studied the morphology of Er(trensal) single-ion molecular magnets adsorbed on graphene/Ru(0001) using X-ray photoemission electron microscopy (X-PEEM). By exploiting the elemental contrast at the erbium M5 edge we observe the formation of molecular islands of homogeneous height with a lateral size of several micrometers. The graphene/Ru(0001) substrate exhibits two different signal levels in bright-field low-energy electron microscopy (LEEM) and in X-PEEM, which are ascribed to the presence of small-angle rotational domains of the graphene lattice. We find that the Er(trensal) molecules form islands solely on the bright areas, while the remaining dark areas are empty. Our results are important for the growth and study of the molecule-inorganic hybrid approach in spintronics schemes.

2.
Phys Rev Lett ; 125(5): 053602, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794849

RESUMEN

We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red (blue) detuned from the cavity yields attractive (repulsive) interactions whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO_{3} and SrTiO_{3}.

3.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170478, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30929635

RESUMEN

Strong interactions between electrons give rise to the complexity of quantum materials, which exhibit exotic functional properties and extreme susceptibility to external perturbations. A growing research trend involves the study of these materials away from equilibrium, especially in cases in which the stimulation with optical pulses can coherently enhance cooperative orders. Time-resolved X-ray probes are integral to this type of research, as they can be used to track atomic and electronic structures as they evolve on ultrafast timescales. Here, we review a series of recent experiments where femtosecond X-ray diffraction was used to measure dynamics of complex solids. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

4.
Sci Rep ; 7(1): 7253, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28775262

RESUMEN

The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

5.
ACS Nano ; 10(11): 9840-9851, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27704780

RESUMEN

Multiferroic composite materials combining ferroelectric and ferromagnetic order at room temperature have great potential for emerging applications such as four-state memories, magnetoelectric sensors, and microwave devices. In this paper, we report an effective and facile liquid phase deposition route to create multiferroic composite thin films involving the spin-coating of nanoparticle dispersions of BaTiO3, a well-known ferroelectric, and CoFe2O4, a highly magnetostrictive material. This approach offers great flexibility in terms of accessible film configurations (co-dispersed as well as layered films), thicknesses (from 100 nm to several µm) and composition (5-50 wt % CoFe2O4 with respect to BaTiO3) to address various potential applications. A detailed structural characterization proves that BaTiO3 and CoFe2O4 remain phase-separated with clear interfaces on the nanoscale after heat treatment, while electrical and magnetic studies indicate the simultaneous presence of both ferroelectric and ferromagnetic order. Furthermore, coupling between these orders within the films is demonstrated with voltage control of the magnetism at ambient temperatures.

6.
Sci Rep ; 6: 27501, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271984

RESUMEN

In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.

7.
Chem Commun (Camb) ; 50(40): 5190-2, 2014 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-24418897

RESUMEN

The magneto-chemical interaction of spin-bearing molecules with substrates is interesting from a coordination chemistry point of view and relevant for spintronics. Unprecedented insight is provided by X-ray photo-emission electron microscopy combined with X-ray magnetic circular dichroism spectroscopy. Here the coupling of a Mn-porphyrin ad-layer to the ferromagnetic Co substrate through suitably modified interfaces is analyzed with this technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...