Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Transl Stroke Res ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652234

RESUMEN

Secondary brain injury (SBI) occurs with a lag of several days post-bleeding in patients with aneurysmal subarachnoid hemorrhage (aSAH) and is a strong contributor to mortality and long-term morbidity. aSAH-SBI coincides with cell-free hemoglobin (Hb) release into the cerebrospinal fluid. This temporal association and convincing pathophysiological concepts suggest that CSF-Hb could be a targetable trigger of SBI. However, sparse experimental evidence for Hb's neurotoxicity in vivo defines a significant research gap for clinical translation. We modeled the CSF-Hb exposure observed in aSAH patients in conscious sheep, which allowed us to assess neurological functions in a gyrencephalic species. Twelve animals were randomly assigned for 3-day bi-daily intracerebroventricular (ICV) injections of either Hb or Hb combined with the high-affinity Hb scavenger protein haptoglobin (Hb-Hp, CSL888). Repeated CSF sampling confirmed clinically relevant CSF-Hb concentrations. This prolonged CSF-Hb exposure over 3 days resulted in disturbed movement activity, reduced food intake, and impaired observational neuroscores. The Hb-induced neurotoxic effects were significantly attenuated when Hb was administered with equimolar haptoglobin. Preterminal magnetic resonance imaging (MRI) showed no CSF-Hb-specific structural brain alterations. In both groups, histology demonstrated an inflammatory response and revealed enhanced perivascular histiocytic infiltrates in the Hb-Hp group, indicative of adaptive mechanisms. Heme exposure in CSF and iron deposition in the brain were comparable, suggesting comparable clearance efficiency of Hb and Hb-haptoglobin complexes from the intracranial compartment. We identified a neurological phenotype of CSF-Hb toxicity in conscious sheep, which is rather due to neurovascular dysfunction than structural brain injury. Haptoglobin was effective at attenuating CSF-Hb-induced neurological deterioration, supporting its therapeutic potential.

2.
J Clin Invest ; 134(3)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060331

RESUMEN

Microscopic hemorrhage is a common aspect of cancers, yet its potential role as an independent factor influencing both cancer progression and therapeutic response is largely ignored. Recognizing the essential function of macrophages in red blood cell disposal, we explored a pathway that connects intratumoral hemorrhage with the formation of cancer-promoting tumor-associated macrophages (TAMs). Using spatial transcriptomics, we found that NRF2-activated myeloid cells possessing characteristics of procancerous TAMs tend to cluster in perinecrotic hemorrhagic tumor regions. These cells resembled antiinflammatory erythrophagocytic macrophages. We identified heme, a red blood cell metabolite, as a pivotal microenvironmental factor steering macrophages toward protumorigenic activities. Single-cell RNA-Seq and functional assays of TAMs in 3D cell culture spheroids revealed how elevated intracellular heme signals via the transcription factor NRF2 to induce cancer-promoting TAMs. These TAMs stabilized epithelial-mesenchymal transition, enhancing cancer invasiveness and metastatic potential. Additionally, NRF2-activated macrophages exhibited resistance to reprogramming by IFN-γ and anti-CD40 antibodies, reducing their tumoricidal capacity. Furthermore, MC38 colon adenocarcinoma-bearing mice with NRF2 constitutively activated in leukocytes were resistant to anti-CD40 immunotherapy. Overall, our findings emphasize hemorrhage-activated NRF2 in TAMs as a driver of cancer progression, suggesting that targeting this pathway could offer new strategies to enhance cancer immunity and overcome therapy resistance.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Animales , Ratones , Factor 2 Relacionado con NF-E2/genética , Macrófagos Asociados a Tumores , Adenocarcinoma/patología , Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Inmunoterapia , Hemo , Microambiente Tumoral
3.
J Stroke Cerebrovasc Dis ; 32(11): 107357, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734180

RESUMEN

OBJECTIVES: Cerebrospinal fluid hemoglobin has been positioned as a potential biomarker and drug target for aneurysmal subarachnoid hemorrhage-related secondary brain injury (SAH-SBI). The maximum amount of hemoglobin, which may be released into the cerebrospinal fluid, is defined by the initial subarachnoid hematoma volume (ISHV). In patients without external ventricular or lumbar drain, there remains an unmet clinical need to predict the risk for SAH-SBI. The aim of this study was to explore automated segmentation of ISHV as a potential surrogate for cerebrospinal fluid hemoglobin to predict SAH-SBI. METHODS: This study is based on a retrospective analysis of imaging and clinical data from 220 consecutive patients with aneurysmal subarachnoid hemorrhage collected over a five-year period. 127 annotated initial non-contrast CT scans were used to train and test a convolutional neural network to automatically segment the ISHV in the remaining cohort. Performance was reported in terms of Dice score and intraclass correlation. We characterized the associations between ISHV and baseline cohort characteristics, SAH-SBI, ventriculoperitoneal shunt dependence, functional outcome, and survival. Established clinical (World Federation of Neurosurgical Societies, Hunt & Hess) and radiological (modified Fisher, Barrow Neurological Institute) scores served as references. RESULTS: A strong volume agreement (0.73 Dice, range 0.43 - 0.93) and intraclass correlation (0.89, 95% CI, 0.81-0.94) were shown. While ISHV was not associated with the use of antithrombotics or cardiovascular risk factors, there was strong evidence for an association with a lower Glasgow Coma Scale at hospital admission. Aneurysm size and location were not associated with ISHV, but the presence of intracerebral or intraventricular hemorrhage were independently associated with higher ISHV. Despite strong evidence for a positive association between ISHV and SAH-SBI, the discriminatory ability of ISHV for SAH-SBI was insufficient. The discriminatory ability of ISHV was, however, higher regarding ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up. Multivariate survival analysis provided strong evidence for an independent negative association between survival probability and both ISHV and intraventricular hemorrhage. CONCLUSIONS: The proposed algorithm demonstrates strong performance in volumetric segmentation of the ISHV on the admission CT. While the discriminatory ability of ISHV for SAH-SBI was similar to established clinical and radiological scores, it showed a high discriminatory ability for ventriculoperitoneal shunt dependence and functional outcome at three-months follow-up.

4.
J Stroke Cerebrovasc Dis ; 32(3): 106985, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640721

RESUMEN

OBJECTIVES: Cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) may be one of the main drivers of secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Haptoglobin scavenging of CSF-Hb has been shown to mitigate cerebrovascular disruption. Using digital subtraction angiography (DSA) and blood oxygenation-level dependent cerebrovascular reactivity imaging (BOLD-CVR) the aim was to assess the acute toxic effect of CSF-Hb on cerebral blood flow and autoregulation, as well as to test the protective effects of haptoglobin. METHODS: DSA imaging was performed in eight anesthetized and ventilated sheep (mean weight: 80.4 kg) at baseline, 15, 30, 45 and 60 minutes after infusion of hemoglobin (Hb) or co-infusion with haptoglobin (Hb:Haptoglobin) into the left lateral ventricle. Additionally, 10 ventilated sheep (mean weight: 79.8 kg) underwent BOLD-CVR imaging to assess the cerebrovascular reserve capacity. RESULTS: DSA imaging did not show a difference in mean transit time or cerebral blood flow. Whole-brain BOLD-CVR compared to baseline decreased more in the Hb group after 15 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs -0.01 ± 0.02) and remained diminished compared to Hb:Haptoglobin group after 30 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.0 ± 0.01), 45 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.01 vs 0.01 ± 0.02) and 60 minutes (Hb vs Hb:Haptoglobin: -0.03 ± 0.02 vs 0.01 ± 0.01). CONCLUSION: It is demonstrated that CSF-Hb toxicity leads to rapid cerebrovascular reactivity impairment, which is blunted by haptoglobin co-infusion. BOLD-CVR may therefore be further evaluated as a monitoring strategy for CSF-Hb toxicity after aSAH.


Asunto(s)
Haptoglobinas , Hemorragia Subaracnoidea , Animales , Ovinos , Encéfalo/diagnóstico por imagen , Hemorragia Subaracnoidea/diagnóstico por imagen , Diagnóstico por Imagen , Circulación Cerebrovascular/fisiología , Hemoglobinas , Imagen por Resonancia Magnética/métodos
5.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36593065

RESUMEN

BACKGROUND: Agonistic anti-CD40 monoclonal antibodies (mAbs) have emerged as promising immunotherapeutic compounds with impressive antitumor effects in mouse models. However, preclinical and clinical studies faced dose-limiting toxicities mediated by necroinflammatory liver disease. An effective prophylactic treatment for liver immune-related adverse events that does not suppress specific antitumor immunity remains to be found. METHODS: We used different mouse models and time-resolved single-cell RNA-sequencing to characterize the pathogenesis of anti-CD40 mAb induced liver toxicity. Subsequently, we developed an antibody-based treatment protocol to selectively target red blood cells (RBCs) for erythrophagocytosis in the liver, inducing an anti-inflammatory liver macrophage reprogramming. RESULTS: We discovered that CD40 signaling in Clec4f+ Kupffer cells is the non-redundant trigger of anti-CD40 mAb-induced liver toxicity. Taking advantage of the highly specific functionality of liver macrophages to clear antibody-tagged RBCs from the blood, we hypothesized that controlled erythrophagocytosis and the linked anti-inflammatory signaling by the endogenous metabolite heme could be exploited to reprogram liver macrophages selectively. Repeated low-dose administration of a recombinant murine Ter119 antibody directed RBCs for selective phagocytosis in the liver and skewed the phenotype of liver macrophages into a Hmoxhigh/Marcohigh/MHCIIlow anti-inflammatory phenotype. This unique mode of action prevented necroinflammatory liver disease following high-dose administration of anti-CD40 mAbs. In contrast, extrahepatic inflammation, antigen-specific immunity, and antitumor activity remained unaffected in Ter119 treated animals. CONCLUSIONS: Our study offers a targeted approach to uncouple CD40-augmented antitumor immunity in peripheral tissues from harmful inflammatoxicity in the liver.


Asunto(s)
Antineoplásicos , Neoplasias , Ratones , Animales , Macrófagos del Hígado/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoterapia/métodos , Hígado
6.
J Neuroinflammation ; 19(1): 290, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482445

RESUMEN

BACKGROUND: The functional neurological outcome of patients with intracerebral hemorrhage (ICH) strongly relates to the degree of secondary brain injury (ICH-SBI) evolving within days after the initial bleeding. Different mechanisms including the incitement of inflammatory pathways, dysfunction of the blood-brain barrier (BBB), activation of resident microglia, and an influx of blood-borne immune cells, have been hypothesized to contribute to ICH-SBI. Yet, the spatiotemporal interplay of specific inflammatory processes within different brain compartments has not been sufficiently characterized, limiting potential therapeutic interventions to prevent and treat ICH-SBI. METHODS: We used a whole-blood injection model in mice, to systematically characterized the spatial and temporal dynamics of inflammatory processes after ICH using 7-Tesla magnetic resonance imaging (MRI), spatial RNA sequencing (spRNAseq), functional BBB assessment, and immunofluorescence average-intensity-mapping. RESULTS: We identified a pronounced early response of the choroid plexus (CP) peaking at 12-24 h that was characterized by inflammatory cytokine expression, epithelial and endothelial expression of leukocyte adhesion molecules, and the accumulation of leukocytes. In contrast, we observed a delayed secondary reaction pattern at the injection site (striatum) peaking at 96 h, defined by gene expression corresponding to perilesional leukocyte infiltration and correlating to the delayed signal alteration seen on MRI. Pathway analysis revealed a dependence of the early inflammatory reaction in the CP on toll-like receptor 4 (TLR4) signaling via myeloid differentiation factor 88 (MyD88). TLR4 and MyD88 knockout mice corroborated this observation, lacking the early upregulation of adhesion molecules and leukocyte infiltration within the CP 24 h after whole-blood injection. CONCLUSIONS: We report a biphasic brain reaction pattern after ICH with a MyD88-TLR4-dependent early inflammatory response of the CP, preceding inflammation, edema and leukocyte infiltration at the lesion site. Pharmacological targeting of the early CP activation might harbor the potential to modulate the development of ICH-SBI.


Asunto(s)
Edema Encefálico , Animales , Ratones , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/etiología , Factor 88 de Diferenciación Mieloide/genética , Plexo Coroideo/diagnóstico por imagen , Receptor Toll-Like 4/genética , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/diagnóstico por imagen
7.
Commun Biol ; 5(1): 742, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879431

RESUMEN

Ambiguity surrounds the existence and morphology of the human forniceal commissure. We combine advanced in-vivo tractography, multidirectional ex-vivo fiber dissection, and multiplanar histological analysis to characterize this structure's anatomy. Across all 178 subjects, in-vivo fiber dissection based on the Human Connectome Project 7 T MRI data identifies no interhemispheric connections between the crura fornicis. Multidirectional ex-vivo fiber dissection under the operating microscope demonstrates the psalterium as a thin soft-tissue membrane spanning between the right and left crus fornicis, but exposes no commissural fibers. Multiplanar histological analysis with myelin and Bielchowsky silver staining, however, visualizes delicate cruciform fibers extending between the crura fornicis, enclosed by connective tissue, the psalterium. The human forniceal commissure is therefore much more delicate than previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the forniceal commissure in non-human primates compared to non-primate eutherian mammals.


Asunto(s)
Conectoma , Animales , Humanos , Imagen por Resonancia Magnética , Mamíferos , Vaina de Mielina , Filogenia
8.
Metallomics ; 14(8)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35906878

RESUMEN

Hemoglobin-iron is a red blood cell toxin contributing to secondary brain injury after intracranial bleeding. We present a model to visualize an intracerebral hematoma and secondary hemoglobin-iron distribution by detecting 58Fe-labeled hemoglobin (Hb) with laser ablation-inductively coupled plasma-mass spectrometry on mouse brain cryosections after stereotactic whole blood injection for different time periods. The generation of 58Fe-enriched blood and decisive steps in the acute hemorrhage formation and evolution were evaluated. The model allows visualization and quantification of 58Fe with high spatial resolution and striking signal-to-noise ratio. Script-based evaluation of the delocalization depth revealed ongoing 58Fe delocalization in the brain even 6 days after hematoma induction. Collectively, the model can quantify the distribution of Hb-derived iron post-bleeding, providing a methodological framework to study the pathophysiological basis of cell-free Hb toxicity in hemorrhagic stroke.


Asunto(s)
Hemorragias Intracraneales , Hierro , Modelos Biológicos , Animales , Hematoma/diagnóstico por imagen , Hemorragias Intracraneales/diagnóstico por imagen , Hierro/análisis , Espectrometría de Masas/métodos , Ratones
9.
BMC Neurol ; 22(1): 267, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35850705

RESUMEN

INTRODUCTION: Preclinical studies provided a strong rationale for a pathophysiological link between cell-free hemoglobin in the cerebrospinal fluid (CSF-Hb) and secondary brain injury after subarachnoid hemorrhage (SAH-SBI). In a single-center prospective observational clinical study, external ventricular drain (EVD) based CSF-Hb proved to be a promising biomarker to monitor for SAH-SBI. The primary objective of the HeMoVal study is to prospectively validate the association between EVD based CSF-Hb and SAH-SBI during the first 14 days post-SAH. Secondary objectives include the assessment of the discrimination ability of EVD based CSF-Hb for SAH-SBI and the definition of a clinically relevant range of EVD based CSF-Hb toxicity. In addition, lumbar drain (LD) based CSF-Hb will be assessed for its association with and discrimination ability for SAH-SBI. METHODS: HeMoVal is a prospective international multicenter observational cohort study. Adult patients admitted with aneurysmal subarachnoid hemorrhage (aSAH) are eligible. While all patients with aSAH are included, we target a sample size of 250 patients with EVD within the first 14 day after aSAH. Epidemiologic and disease-specific baseline measures are assessed at the time of study inclusion. In patients with EVD or LD, each day during the first 14 days post-SAH, 2 ml of CSF will be sampled in the morning, followed by assessment of the patients for SAH-SBI, co-interventions, and complications in the afternoon. After 3 months, a clinical follow-up will be performed. For statistical analysis, the cohort will be stratified into an EVD, LD and full cohort. The primary analysis will quantify the strength of association between EVD based CSF-Hb and SAH-SBI in the EVD cohort based on a generalized additive model. Secondary analyses include the strength of association between LD based CSF-Hb and SAH-SBI in the LD cohort based on a generalized additive model, as well as the discrimination ability of CSF-Hb for SAH-SBI based on receiver operating characteristic (ROC) analyses. DISCUSSION: We hypothesize that this study will validate the value of CSF-Hb as a biomarker to monitor for SAH-SBI. In addition, the results of this study will provide the potential base to define an intervention threshold for future studies targeting CSF-Hb toxicity after aSAH. STUDY REGISTRATION: ClinicalTrials.gov Identifier NCT04998370 . Date of registration: August 10, 2021.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Adulto , Biomarcadores , Lesiones Encefálicas/complicaciones , Estudios de Cohortes , Hemoglobina Falciforme , Hemoglobinas , Humanos , Estudios Multicéntricos como Asunto , Estudios Observacionales como Asunto , Estudios Prospectivos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico
10.
Blood ; 140(7): 769-781, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35714304

RESUMEN

Sickle cell disease (SCD) is an inherited hemolytic anemia caused by a single point mutation in the ß-globin gene of hemoglobin that leads to synthesis of sickle hemoglobin (HbS) in red blood cells (RBCs). HbS polymerizes in hypoxic conditions, leading to intravascular hemolysis, release of free hemoglobin and heme, and increased adhesion of blood cells to the endothelial vasculature, which causes painful vaso-occlusion and organ damage. HbS polymerization kinetics are strongly dependent on the intracellular HbS concentration; a relatively small reduction in cellular HbS concentration may prevent HbS polymerization and its sequelae. We hypothesized that iron restriction via blocking ferroportin, the unique iron transporter in mammals, might reduce HbS concentration in RBCs, thereby decreasing hemolysis, improving blood flow, and preventing vaso-occlusive events. Indeed, vamifeport (also known as VIT-2763), a clinical-stage oral ferroportin inhibitor, reduced hemolysis markers in the Townes model of SCD. The RBC indices of vamifeport-treated male and female Townes mice exhibited changes attributable to iron-restricted erythropoiesis: decreased corpuscular hemoglobin concentration mean and mean corpuscular volume, as well as increased hypochromic and microcytic RBC fractions. Furthermore, vamifeport reduced plasma soluble VCAM-1 concentrations, which suggests lowered vascular inflammation. Accordingly, intravital video microscopy of fluorescently labeled blood cells in the microvasculature of Townes mice treated with vamifeport revealed diminished adhesion to the endothelium and improved hemodynamics. These preclinical data provide a strong proof-of-concept for vamifeport in the Townes model of SCD and support further development of this compound as a potential novel therapy in SCD.


Asunto(s)
Anemia de Células Falciformes , Hemólisis , Anemia de Células Falciformes/complicaciones , Animales , Proteínas de Transporte de Catión , Modelos Animales de Enfermedad , Femenino , Hemodinámica , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Hemoglobinas/metabolismo , Hierro/uso terapéutico , Masculino , Mamíferos/metabolismo , Ratones
11.
Data Brief ; 41: 107866, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35141374

RESUMEN

Hemorrhagic stroke is a major cause of morbidity and mortality worldwide. Secondary mechanisms of brain injury adversely affect functional outcome in patients after intracranial hemorrhage. Potential drivers of intracranial hemorrhage-related secondary brain injury are hemoglobin and its downstream degradation products released from lysed red blood cells, such as free heme. We established a mouse model with stereotactic striatal injection of heme-albumin to gain insights into the toxicity mechanisms of free heme in the brain and assess the therapeutic potential of heme binding and biochemical neutralization by hemopexin. We defined the dose-dependent transcriptional effect of heme or heme-hemopexin exposure 24 h after injection by spatial transcriptome analysis of lesion-centered coronal cryosections. The spatial transcriptome was interpreted in a multimodal approach along with histology, magnetic resonance imaging, and behavioral data and reported in the associated research article "Spatial transcriptome analysis defines heme as a hemopexin-targetable inflammatoxin in the brain" [1]. The spatially resolved transcriptome dataset made available here is intended for continued analysis of free heme toxicity in the brain, which is of potential pathophysiological and therapeutic significance in the context of a wide range of neurovascular and neurodegenerative diseases.

12.
Cell Death Differ ; 29(8): 1450-1465, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35031770

RESUMEN

Heme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of bone marrow progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA-sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency.


Asunto(s)
Anemia de Células Falciformes , Células de la Médula Ósea , Células Dendríticas , Hemo , Macrófagos , Factor 2 Relacionado con NF-E2 , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Células Dendríticas/citología , Eritropoyesis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Hemólisis , Hierro , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , ARN , Bazo
13.
Free Radic Biol Med ; 179: 277-287, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34793930

RESUMEN

After intracranial hemorrhage, heme is released from cell-free hemoglobin. This red blood cell component may drive secondary brain injury at the hematoma‒brain interface. This study aimed to generate a spatially resolved map of transcriptome-wide gene expression changes in the heme-exposed brain and to define the potential therapeutic activity of the heme-binding protein, hemopexin. We stereotactically injected saline, heme, or heme‒hemopexin into the striatum of C57BL/6J mice. After 24 h, we elucidated the two-dimensional spatial transcriptome by sequencing 21760 tissue-covered features, at a mean transcript coverage of 3849 genes per feature. In parallel, we studied the extravasation of systemically administered fluorescein isothiocyanate labeled (FITC)-dextran, magnetic resonance imaging features indicative of focal edema and perfusion, and neurological functions as translational correlates of heme toxicity. We defined a cerebral heme-response signature by performing bidimensional differential gene expression analysis, based on unsupervised clustering and manual segmentation of sequenced features. Heme exerted a consistent and dose-dependent proinflammatory activity in the brain, which occurred at minimal exposures, below the toxicity threshold for the induction of vascular leakage. We found dose-dependent regional divergence of proinflammatory heme signaling pathways, consistent with reactive astrocytosis and microglial activation. Co-injection of heme with hemopexin attenuated heme-induced gene expression changes and preserved the homeostatic microglia signature. Hemopexin also prevented heme-induced disruption of the blood‒brain barrier and radiological and functional signals of heme injury in the brain. In conclusion, we defined heme as a potent inflammatoxin that may drive secondary brain injury after intracerebral hemorrhage. Co-administration of hemopexin attenuated the heme-derived toxic effects on a molecular, cellular, and functional level, suggesting a translational therapeutic strategy.


Asunto(s)
Hemo , Hemopexina , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Hemopexina/genética , Hemopexina/metabolismo , Ratones , Ratones Endogámicos C57BL , Transcriptoma
14.
Free Radic Biol Med ; 175: 95-107, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478834

RESUMEN

Hemopexin (Hpx) is a crucial defense protein against heme liberated from degraded hemoglobin during hemolysis. High heme stress creates an imbalance in Hpx bioavailability, favoring heme accumulation and downstream pathophysiological responses leading to cardiopulmonary disease progression in sickle cell disease (SCD) patients. Here, we evaluated a model of murine SCD, which was designed to accelerate red blood cell sickling, pulmonary hypertension, right ventricular dysfunction, and exercise intolerance by exposure of the mice to moderate hypobaric hypoxia. The sequence of pathophysiology in this model tracks with circulatory heme accumulation, lipid oxidation, extensive remodeling of the pulmonary vasculature, and fibrosis. We hypothesized that Hpx replacement for an extended period would improve exercise tolerance measured by critical speed as a clinically meaningful therapeutic endpoint. Further, we sought to define the effects of Hpx on upstream cardiopulmonary function, histopathology, and tissue oxidation. Our data shows that tri-weekly administrations of Hpx for three months dose-dependently reduced heme exposure and pulmonary hypertension while improving cardiac pressure-volume relationships and exercise tolerance. Furthermore, Hpx administration dose-dependently attenuated pulmonary fibrosis and oxidative modifications in the lung and myocardium of the right ventricle. Observations in our SCD murine model are consistent with pulmonary vascular and right ventricular pathology at autopsy in SCD patients having suffered from severe pulmonary hypertension, right ventricular dysfunction, and sudden cardiac death. This study provides a translational evaluation supported by a rigorous outcome analysis demonstrating therapeutic proof-of-concept for Hpx replacement in SCD.


Asunto(s)
Anemia de Células Falciformes , Hemopexina , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Hemo , Hemoglobinas , Hemólisis , Humanos , Ratones
15.
Mol Pharm ; 18(8): 3158-3170, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34292741

RESUMEN

Cell-free hemoglobin (Hb) is a driver of disease progression in conditions with intravascular or localized hemolysis. Genetic and acquired anemias or emergency medical conditions such as aneurysmal subarachnoid hemorrhage involve tissue Hb exposure. Haptoglobin (Hp) captures Hb in an irreversible protein complex and prevents its pathophysiological contributions to vascular nitric oxide depletion and tissue oxidation. Preclinical proof-of-concept studies suggest that human plasma-derived Hp is a promising therapeutic candidate for several Hb-driven diseases. Optimizing the efficacy and safety of Hb-targeting biotherapeutics may require structural and functional modifications for specific indications. Improved Hp variants could be designed to achieve the desired tissue distribution, metabolism, and elimination to target hemolytic disease states effectively. However, it is critical to ensure that these modifications maintain the function of Hp. Using transient mammalian gene expression of Hp combined with co-transfection of the pro-haptoglobin processing protease C1r-LP, we established a platform for generating recombinant Hp-variants. We designed an Hpß-scaffold, which was expressed in this system at high levels as a monomeric unit (mini-Hp) while maintaining the key protective functions of Hp. We then used this Hpß-scaffold as the basis to develop an initial proof-of-concept Hp fusion protein using human serum albumin as the fusion partner. Next, a hemopexin-Hp fusion protein with bispecific heme and Hb detoxification capacity was generated. Further, we developed a Hb scavenger devoid of CD163 scavenger receptor binding. The functions of these proteins were then characterized for Hb and heme-binding, binding of the Hp-Hb complexes with the clearance receptor CD163, antioxidant properties, and vascular nitric oxide sparing capacity. Our platform is designed to support the generation of innovative Hb scavenger biotherapeutics with novel modes of action and potentially improved formulation characteristics, function, and pharmacokinetics.


Asunto(s)
Productos Biológicos/metabolismo , Diseño de Fármacos/métodos , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemopexina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Arteria Basilar/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Células HEK293 , Haptoglobinas/química , Haptoglobinas/genética , Hemo/metabolismo , Hemoglobinas/química , Hemólisis , Hemopexina/química , Hemopexina/genética , Humanos , Unión Proteica , Receptores de Superficie Celular/metabolismo , Receptores Depuradores/metabolismo , Proteínas Recombinantes de Fusión/genética , Albúmina Sérica Humana/química , Albúmina Sérica Humana/genética , Albúmina Sérica Humana/metabolismo , Porcinos , Transfección , Vasodilatación/efectos de los fármacos
16.
J Cereb Blood Flow Metab ; 41(11): 3000-3015, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34102922

RESUMEN

Secondary brain injury after aneurysmal subarachnoid hemorrhage (SAH-SBI) contributes to poor outcomes in patients after rupture of an intracranial aneurysm. The lack of diagnostic biomarkers and novel drug targets represent an unmet need. The aim of this study was to investigate the clinical and pathophysiological association between cerebrospinal fluid hemoglobin (CSF-Hb) and SAH-SBI. In a cohort of 47 patients, we collected daily CSF-samples within 14 days after aneurysm rupture. There was very strong evidence for a positive association between spectrophotometrically determined CSF-Hb and SAH-SBI. The accuracy of CSF-Hb to monitor for SAH-SBI markedly exceeded that of established methods (AUC: 0.89 [0.85-0.92]). Temporal proteome analysis revealed erythrolysis accompanied by an adaptive macrophage response as the two dominant biological processes in the CSF-space after aneurysm rupture. Ex-vivo experiments on the vasoconstrictive and oxidative potential of Hb revealed critical inflection points overlapping CSF-Hb thresholds in patients with SAH-SBI. Selective depletion and in-solution neutralization by haptoglobin or hemopexin efficiently attenuated the vasoconstrictive and lipid peroxidation activities of CSF-Hb. Collectively, the clinical association between high CSF-Hb levels and SAH-SBI, the underlying pathophysiological rationale, and the favorable effects of haptoglobin and hemopexin in ex-vivo experiments position CSF-Hb as a highly attractive biomarker and potential drug target.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Isquemia Encefálica/etiología , Hemoglobinas/líquido cefalorraquídeo , Hemorragia Subaracnoidea/complicaciones , Vasoespasmo Intracraneal/etiología , Adulto , Anciano , Líquido Cefalorraquídeo/química , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
J Vasc Res ; 57(2): 106-112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32107347

RESUMEN

The standardization of resistance vessel preparation is crucial to compare physiologic vascular reactivity under different experimental conditions. Here, we describe a generalizable experimental setup for ex vivo vascular function experiments and their mathematical basis. Porcine basilar arteries and chicken common carotid arteries were isolated post mortem via standardized surgical approaches. The inner circumference of these vessels with a passive wall tension corresponding to 100 mm Hg (IC100) as well as the circumference at which the active force production of the vessel is maximal (IC1) were determined systematically. The IC1/IC100 ratio (also referred to as factor k), a value that is believed to be constant for a defined vessel type in one species, was calculated by a novel mathematical approach. Here, we present an easy-to-use toolbox for the systematic and computer-based calculation of factor k and simplified optimal pre-stretching of any vascular segments for wire myography experiments.


Asunto(s)
Arteria Basilar/fisiología , Arteria Carótida Común/fisiología , Animales , Pollos , Matemática , Porcinos
18.
J Clin Invest ; 129(12): 5219-5235, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31454333

RESUMEN

Delayed ischemic neurological deficit (DIND) is a major driver of adverse outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH), defining an unmet need for therapeutic development. Cell-free hemoglobin that is released from erythrocytes into the cerebrospinal fluid (CSF) is suggested to cause vasoconstriction and neuronal toxicity, and correlates with the occurrence of DIND. Cell-free hemoglobin in the CSF of patients with aSAH disrupted dilatory NO signaling ex vivo in cerebral arteries, which shifted vascular tone balance from dilation to constriction. We found that selective removal of hemoglobin from patient CSF with a haptoglobin-affinity column or its sequestration in a soluble hemoglobin-haptoglobin complex was sufficient to restore physiological vascular responses. In a sheep model, administration of haptoglobin into the CSF inhibited hemoglobin-induced cerebral vasospasm and preserved vascular NO signaling. We identified 2 pathways of hemoglobin delocalization from CSF into the brain parenchyma and into the NO-sensitive compartment of small cerebral arteries. Both pathways were critical for hemoglobin toxicity and were interrupted by the large hemoglobin-haptoglobin complex that inhibited spatial requirements for hemoglobin reactions with NO in tissues. Collectively, our data show that compartmentalization of hemoglobin by haptoglobin provides a novel framework for innovation aimed at reducing hemoglobin-driven neurological damage after subarachnoid bleeding.


Asunto(s)
Haptoglobinas/administración & dosificación , Hemoglobinas/administración & dosificación , Hemorragia Subaracnoidea/metabolismo , Espacio Subaracnoideo/metabolismo , Vasoespasmo Intracraneal/metabolismo , Animales , Arteria Basilar/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Femenino , Haptoglobinas/química , Haptoglobinas/farmacología , Hemoglobinas/química , Hemoglobinas/farmacología , Humanos , Aneurisma Intracraneal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteómica , Ovinos , Transducción de Señal , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...