Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(5): e64320, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717596

RESUMEN

Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope (HSM) to perform single particle tracking of up to 8 spectrally distinct species of quantum dots (QDs) at 27 frames per second. The distinct emission spectra of the QDs allows localization with ∼10 nm precision even when the probes are clustered at spatial scales below the diffraction limit. The capabilities of the HSM are demonstrated here by application of multi-color single particle tracking to observe membrane protein behavior, including: 1) dynamic formation and dissociation of Epidermal Growth Factor Receptor dimers; 2) resolving antigen induced aggregation of the high affinity IgE receptor, FcεR1; 3) four color QD tracking while simultaneously visualizing GFP-actin; and 4) high-density tracking for fast diffusion mapping.


Asunto(s)
Color , Microscopía/instrumentación , Puntos Cuánticos , Línea Celular Tumoral , Humanos , Proteínas de la Membrana/metabolismo , Microscopía/métodos , Reproducibilidad de los Resultados , Transducción de Señal
2.
Biomed Opt Express ; 2(5): 1377-93, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559149

RESUMEN

Single molecule localization based super-resolution imaging techniques require repeated localization of many single emitters. We describe a method that uses the maximum likelihood estimator to localize multiple emitters simultaneously within a single, two-dimensional fitting sub-region, yielding an order of magnitude improvement in the tolerance of the analysis routine with regards to the single-frame active emitter density. Multiple-emitter fitting enables the overall performance of single-molecule super-resolution to be improved in one or more of several metrics that result in higher single-frame density of localized active emitters. For speed, the algorithm is implemented on Graphics Processing Unit (GPU) architecture, resulting in analysis times on the order of minutes. We show the performance of multiple emitter fitting as a function of the single-frame active emitter density. We describe the details of the algorithm that allow robust fitting, the details of the GPU implementation, and the other imaging processing steps required for the analysis of data sets.

3.
Nephron Exp Nephrol ; 103(2): e50-4, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16543764

RESUMEN

Advances in microscopy now enable researchers to easily acquire multi-channel three-dimensional (3D) images and 3D time series (4D). However, processing, analyzing, and displaying this data can often be difficult and time- consuming. We discuss some of the software tools and techniques that are available to accomplish these tasks.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Microscopía , Programas Informáticos , Animales , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos
4.
Am J Physiol Cell Physiol ; 287(6): C1569-76, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15282193

RESUMEN

In the distal tubule, Na(+) resorption is mediated by epithelial Na(+) channels (ENaC). Hormones such as aldosterone, vasopressin, and insulin modulate ENaC membrane targeting, assembly, and/or kinetic activity, thereby regulating salt and water homeostasis. Insulin binds to a receptor on the basal membrane to initiate a signal transduction cascade that rapidly results in an increase in apical membrane ENaC. Current models of this signaling pathway envision diffusion of signaling intermediates from the basal to the apical membrane. This necessitates diffusion of several high-molecular-weight signaling elements across a three-dimensional space. Transduction of the insulin signal involves the phosphoinositide pathway, but how and where this lipid-based signaling pathway controls ENaC activity is not known. We used tagged channels, biosensor lipid probes, and intravital imaging to investigate the role of lipids in insulin-stimulated Na(+) flux. Insulin-stimulated delivery of intracellular ENaC to apical membranes was concurrent with plasma membrane-limited changes in lipid composition. Notably, in response to insulin, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) formed in the basolateral membrane, rapidly diffused within the bilayer, and crossed the tight junction to enter the apical membrane. This novel signaling pathway takes advantage of the fact that the lipids of the plasma membrane's inner leaflet are not constrained by the tight junction. Therefore, diffusion of PIP(3) as a signal transduction intermediate occurs within a planar surface, thus facilitating swift responses and confining and controlling the signaling pathway.


Asunto(s)
Microscopía Confocal/métodos , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Canales de Sodio/metabolismo , Animales , Línea Celular , Polaridad Celular/fisiología , Canales Epiteliales de Sodio , Proteínas Fluorescentes Verdes , Hipoglucemiantes/farmacología , Imagenología Tridimensional , Insulina/farmacología , Riñón/citología , Membrana Dobles de Lípidos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Sodio/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA