Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38659925

RESUMEN

Synaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein Synaptotagmin 1 (Syt1) serves as a Ca2+ sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating into PM upon Ca2+ binding, however the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein Complexin (Cpx) promotes the Ca2+-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics (MD) to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of PM and SV. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a "dead-end" state, wherein Syt1 attaches tightly to PM but does not immerse into it, as opposed to a pre-fusion state, which has the tips of the Ca2+-bound C2 domains of Syt1 inserted into PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous Syt1 docking to the SNARE-Cpx bundle and PM, followed by the Ca2+ chelation and the penetration of the tips of Syt1 domains into PM, leading to the pre-fusion state of the protein-lipid complex. Importantly, we found that the direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the pre-fusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative "dead-end" state of the protein-lipid complex that can be formed if this pathway is disrupted.

2.
Membranes (Basel) ; 13(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36984694

RESUMEN

Neuronal transmitters are packaged in synaptic vesicles (SVs) and released by the fusion of SVs with the presynaptic membrane (PM). An inflow of Ca2+ into the nerve terminal triggers fusion, and the SV-associated protein Synaptotagmin 1 (Syt1) serves as a Ca2+ sensor. In preparation for fusion, SVs become attached to the PM by the SNARE protein complex, a coiled-coil bundle that exerts the force overcoming SV-PM repulsion. A cytosolic protein Complexin (Cpx) attaches to the SNARE complex and differentially regulates the evoked and spontaneous release components. It is still debated how the dynamic interactions of Syt1, SNARE proteins and Cpx lead to fusion. This problem is confounded by heterogeneity in the conformational states of the prefusion protein-lipid complex and by the lack of tools to experimentally monitor the rapid conformational transitions of the complex, which occur at a sub-millisecond scale. However, these complications can be overcome employing molecular dynamics (MDs), a computational approach that enables simulating interactions and conformational transitions of proteins and lipids. This review discusses the use of molecular dynamics for the investigation of the pre-fusion protein-lipid complex. We discuss the dynamics of the SNARE complex between lipid bilayers, as well as the interactions of Syt1 with lipids and SNARE proteins, and Cpx regulating the assembly of the SNARE complex.

3.
Brain Sci ; 12(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35326282

RESUMEN

The synapsin family offers a strong linkage between synaptic mechanisms and the epileptic phenotype. Synapsins are phosphoproteins reversibly associated with synaptic vesicles. Synapsin deficiency can cause epilepsy in humans, and synapsin II (SynII) in knockout (KO) mice causes generalized epileptic seizures. To differentiate between the direct effect of SynII versus its secondary adaptations, we used neonatal intracerebroventricular injections of the adeno-associated virus (AAV) expressing SynII. We found that SynII reintroduction diminished the enhanced synaptic activity in Syn2 KO hippocampal slices. Next, we employed the epileptogenic agent 4-aminopyridine (4-AP) and found that SynII reintroduction completely rescued the epileptiform activity observed in Syn2 KO slices upon 4-AP application. Finally, we developed a protocol to provoke behavioral seizures in young Syn2 KO animals and found that SynII reintroduction balances the behavioral seizures. To elucidate the mechanisms through which SynII suppresses hyperexcitability, we injected the phospho-incompetent version of Syn2 that had the mutated protein kinase A (PKA) phosphorylation site. The introduction of the phospho-incompetent SynII mutant suppressed the epileptiform and seizure activity in Syn2 KO mice, but not to the extent observed upon the reintroduction of native SynII. These findings show that SynII can directly suppress seizure activity and that PKA phosphorylation contributes to this function.

4.
J Neurosci ; 42(6): 1001-1019, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34969867

RESUMEN

Using postsynaptically tethered calcium sensor GCaMP, we investigated spontaneous synaptic transmission at individual active zones (AZs) at the Drosophila (both sexes) neuromuscular junction. Optical monitoring of GCaMP events coupled with focal electrical recordings of synaptic currents revealed "hot spots" of spontaneous transmission, which corresponded to transient states of elevated activity at selected AZs. The elevated spontaneous activity had two temporal components, one at a timescale of minutes and the other at a subsecond timescale. We developed a three-state model of AZ preparedness for spontaneous transmission and performed Monte Carlo simulations of the release process, which produced an accurate quantitative description of the variability and time course of spontaneous transmission at individual AZs. To investigate the mechanisms of elevated activity, we first focused on the protein complexin, which binds the SNARE protein complex and serves to clamp spontaneous fusion. Overexpression of Drosophila complexin largely abolished the high-activity states of AZs, while complexin deletion drastically promoted it. A mutation in the SNARE protein Syntaxin-1A had an effect similar to complexin deficiency, promoting the high-activity state. We next tested how presynaptic Ca2+ transients affect the states of elevated activity at individual AZs. We either blocked or promoted Ca2+ influx pharmacologically, and also promoted Ca2+ release from internal stores. These experiments coupled with computations revealed that Ca2+ transients can trigger bursts of spontaneous events from individual AZs or AZ clusters at a subsecond timescale. Together, our results demonstrated that spontaneous transmission is highly heterogeneous, with transient hot spots being regulated by the SNARE machinery and Ca2+SIGNIFICANCE STATEMENT Spontaneous synaptic transmission is a vital component of neuronal communication, since it regulates the neuronal development and plasticity. Our study demonstrated that spontaneous transmission is highly heterogeneous and that nerve terminals create transient "hot spots" of spontaneous release of neuronal transmitters. We show that these hot spots are regulated by the protein machinery mediating the release process and by calcium ions. These results contribute to our understanding of spontaneous synaptic transmission as a dynamic, plastic, and tightly regulated signaling mechanism and unravel fundamental biophysical properties of neuronal communication.


Asunto(s)
Unión Neuromuscular/fisiología , Transmisión Sináptica/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas SNARE/metabolismo , Procesos Estocásticos
5.
Front Mol Neurosci ; 15: 1110538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683858

RESUMEN

Nerve terminals release neuronal transmitters at morphological specializations known as active zones (AZs). Synaptic vesicle fusion at individual AZs is probabilistic, and this property is fundamental for the neuronal information transfer. Until recently, a lack of appropriate tools limited the studies of stochastic properties of neuronal secretion at individual AZs. However, Drosophila transgenic lines that express postsynaptically tethered Ca2+ sensor GCaMP enabled the visualization of single exocytic event at individual AZs. The present mini-review discusses how this powerful approach enables the investigation of the evoked and spontaneous transmission at single AZs and promotes the understanding of the properties of both release components.

6.
eNeuro ; 8(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692090

RESUMEN

Spontaneous synaptic transmission is regulated by the protein complexin (Cpx). Cpx binds the SNARE complex, a coil-coiled four-helical bundle that mediates the attachment of a synaptic vesicle (SV) to the presynaptic membrane (PM). Cpx is thought to clamp spontaneous fusion events by stabilizing a partially unraveled state of the SNARE bundle; however, the molecular detail of this mechanism is still debated. We combined electrophysiology, molecular modeling, and site-directed mutagenesis in Drosophila to develop and validate the atomic model of the Cpx-mediated clamped state of the SNARE complex. We took advantage of botulinum neurotoxins (BoNTs) B and G, which cleave the SNARE protein synaptobrevin (Syb) at different sites. Monitoring synaptic depression on BoNT loading revealed that the clamped state of the SNARE complex has two or three unraveled helical turns of Syb. Site-directed mutagenesis showed that the Cpx clamping function is predominantly maintained by its accessory helix (AH), while molecular modeling suggested that the Cpx AH interacts with the unraveled C terminus of Syb and the SV lipid bilayer. The developed molecular model was employed to design new Cpx poor-clamp and super-clamp mutations and to tested the predictions in silico employing molecular dynamics simulations. Subsequently, we generated Drosophila lines harboring these mutations and confirmed the poor-clamp and super-clamp phenotypes in vivo. Altogether, these results validate the atomic model of the Cpx-mediated fusion clamp, wherein the Cpx AH inserts between the SNARE bundle and the SV lipid bilayer, simultaneously binding the unraveled C terminus of Syb and preventing full SNARE assembly.


Asunto(s)
Proteínas de Drosophila , Proteínas SNARE , Animales , Constricción , Drosophila , Proteínas de Drosophila/genética , Vesículas Sinápticas
7.
Biophys J ; 120(4): 642-661, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33453271

RESUMEN

Release of neuronal transmitters from nerve terminals is triggered by the molecular Ca2+ sensor synaptotagmin 1 (Syt1). Syt1 is a transmembrane protein attached to the synaptic vesicle (SV), and its cytosolic region comprises two domains, C2A and C2B, which are thought to penetrate into lipid bilayers upon Ca2+ binding. Before fusion, SVs become attached to the presynaptic membrane (PM) by the four-helical SNARE complex, which is thought to bind the C2B domain in vivo. To understand how the interactions of Syt1 with lipid bilayers and the SNARE complex trigger fusion, we performed molecular dynamics (MD) simulations at a microsecond scale. We investigated how the isolated C2 modules and the C2AB tandem of Syt1 interact with membranes mimicking either SV or PM. The simulations showed that the C2AB tandem can either bridge SV and PM or insert into PM with its Ca2+-bound tips and that the latter configuration is more favorable. Surprisingly, C2 domains did not cooperate in penetrating into PM but instead mutually hindered their insertion into the bilayer. To test whether the interaction of Syt1 with lipid bilayers could be affected by the C2B-SNARE attachment, we performed systematic conformational analysis of the C2AB-SNARE complex. Notably, we found that the C2B-SNARE interface precludes the coupling of C2 domains and promotes their insertion into PM. We performed the MD simulations of the prefusion protein complex positioned between the lipid bilayers mimicking PM and SV, and our results demonstrated in silico that the presence of the Ca2+ bound C2AB tandem promotes lipid merging. Altogether, our MD simulations elucidated the role of the Syt1-SNARE interactions in the fusion process and produced the dynamic all-atom model of the prefusion protein-lipid complex.


Asunto(s)
Membrana Dobles de Lípidos , Sinaptotagmina I , Calcio/metabolismo , Membrana Celular/metabolismo , Estructura Terciaria de Proteína , Proteínas SNARE/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo
8.
eNeuro ; 6(4)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31387877

RESUMEN

Synapse formation can be promoted by intense activity. At the Drosophila larval neuromuscular junction (NMJ), new synaptic boutons can grow acutely in response to patterned stimulation. We combined confocal imaging with electron microscopy and tomography to investigate the initial stages of growth and differentiation of new presynaptic boutons at the Drosophila NMJ. We found that the new boutons can form rapidly in intact larva in response to intense crawling activity, and we observed two different patterns of bouton formation and maturation. The first pathway involves the growth of filopodia followed by a formation of boutons that are initially devoid of synaptic vesicles (SVs) but filled with filamentous matrix. The second pathway involves rapid budding of synaptic boutons packed with SVs, and these more mature boutons are sometimes capable of exocytosis/endocytosis. We demonstrated that intense activity predominantly promotes the second pathway, i.e., budding of more mature boutons filled with SVs. We also showed that this pathway depends on synapsin (Syn), a neuronal protein which reversibly associates with SVs and mediates their clustering via a protein kinase A (PKA)-dependent mechanism. Finally, we took advantage of the temperature-sensitive mutant sei to demonstrate that seizure activity can promote very rapid budding of new boutons filled with SVs, and this process occurs at scale of minutes. Altogether, these results demonstrate that intense activity acutely and selectively promotes rapid budding of new relatively mature presynaptic boutons filled with SVs, and that this process is regulated via a PKA/Syn-dependent pathway.


Asunto(s)
Locomoción , Unión Neuromuscular/fisiología , Terminales Presinápticos/fisiología , Vesículas Sinápticas/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Drosophila , Proteínas de Drosophila/fisiología , Femenino , Masculino , Unión Neuromuscular/citología , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/ultraestructura , Sinapsinas/fisiología
9.
Mol Cell Neurosci ; 96: 25-34, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858140

RESUMEN

Synapsins are neuronal phosphoproteins that fine-tune synaptic transmission and suppress seizure activity. Synapsin II (SynII) deletion produces epileptic seizures and overexcitability in neuronal networks. Early studies in primary neuronal cultures have shown that SynII deletion results in a delay in synapse formation. More recent studies at hippocampal slices have revealed increased spontaneous activity in SynII knockout (SynII(-)) mice. To reconcile these observations, we systematically re-examined synaptic transmission, synapse formation, and neurite growth in primary hippocampal neuronal cultures. We find that spontaneous glutamatergic synaptic activity was suppressed in SynII(-) neurons during the initial developmental epoch (7 days in vitro, DIV) but was enhanced at later times (12 and18 DIV). The density of synapses, transmission between connected pairs of neurons, and the number of docked synaptic vesicles were not affected by SynII deletion. However, we found that neurite outgrowth in SynII(-) neurons was suppressed during the initial developmental epoch (7 DIV) but enhanced at subsequent developmental stages (12 and18 DIV). This finding can account for the observed effect of SynII deletion on synaptic activity. To test whether the observed phenotype resulted directly from the deletion of SynII we expressed SynII in SynII(-) cultures using an adeno-associated virus (AAV). Expression of SynII at 2 DIV rescued the SynII deletion-dependent alterations in both synaptic activity and neuronal growth. To test whether the increased neurite outgrowth in SynII(-) observed at DIV 12 and18 represents an overcompensation for the initial developmental delay or results directly from SynII deletion we performed "late expression" experiments, transfecting SynII(-) cultures with AAV at 7 DIV. The late SynII expression suppressed neurite outgrowth at 12 and 18 DIV to the levels observed in control neurons, suggesting that these phenotypes directly depend on SynII. These results reveal a novel developmentally regulated role for SynII function in the control of neurite growth.


Asunto(s)
Hipocampo/metabolismo , Proyección Neuronal , Neuronas/metabolismo , Sinapsinas/genética , Potenciales Sinápticos , Animales , Células Cultivadas , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Ratones , Neuronas/citología , Neuronas/fisiología , Sinapsinas/deficiencia
10.
Methods Mol Biol ; 1860: 3-13, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30317495

RESUMEN

Molecular dynamics (MD) simulations enable in silico investigations of the dynamic behavior of proteins and protein complexes. Here, we describe MD simulations of the SNARE complex and its interactions with the neuronal protein complexin. Complexin is an effector of neuronal secretion that inhibits spontaneous fusion and is thought to clamp the fusion process via the interactions with the SNARE complex. We describe MD simulations of the SNARE complex alone and bound to complexin. The MD simulations under external forces imitating the repulsion between lipid bilayers enabled us to investigate unraveling and assembly of the SNARE complex.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Modelos Biológicos , Simulación de Dinámica Molecular , Proteínas SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Membrana Dobles de Lípidos/metabolismo , Unión Proteica , Proteínas SNARE/química , Homología de Secuencia de Aminoácido
11.
J Phys Chem B ; 122(48): 10834-10840, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30408418

RESUMEN

Neuronal transmitters are released from nerve terminals via the fusion of synaptic vesicles with the presynaptic membrane. Vesicles are attached to the membrane via the SNARE complex, comprising the vesicle associated protein synaptobrevin (Syb), the membrane associated protein syntaxin (Syx), and the cytosolic protein SNAP25, that together form a four-helical bundle. The full assembly of Syb onto the core SNARE bundle promotes vesicle fusion. We investigated SNARE assembly using a coarse-grained model of the SNARE complex that retains chemical specificity. Steered force-control simulations of SNARE unzippering were used to set up initial disassembled states of the SNARE complex. From these states, the assembly process was simulated. We find that if Syb is in helical form and proximal to the other helices, then the SNARE complex assembles rapidly, on a microsecond time-scale, which is well within in vivo synaptic vesicle fusion time scales. Assembly times grow exponentially with a separation distance between Syb and Syx C-termini. Our results indicate that for biologically relevant rapid assembly of the SNARE complex, Syb should be in helical form, and the SNARE constituent helices brought into proximity, possibly by an agent, such as a chaperone.


Asunto(s)
Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Simulación de Dinámica Molecular , Método de Montecarlo , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Proteínas Qa-SNARE/química , Proteínas R-SNARE/química , Proteína 25 Asociada a Sinaptosomas/química
12.
Bio Protoc ; 7(17)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-29094061

RESUMEN

We developed a protocol for photoconversion of endocytic marker FM1-43 followed by electron microscopy analysis of synaptic boutons at the Drosophila neuromuscular junction. This protocol allows detection of stained synaptic vesicle even when release rates are very low, such as during the spontaneous release mode. The preparations are loaded with the FM1-43 dye, pre-fixed, treated and illuminated to photoconvert the dye, and then processed for conventional electron microscopy. This procedure enables clear identification of stained synaptic vesicles at electron micrographs.

13.
J Vis Exp ; (127)2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28994789

RESUMEN

Drosophila neuromuscular junction (NMJ) is an excellent model system to study glutamatergic synaptic transmission. We describe the technique of focal macropatch recordings of synaptic currents from visualized boutons at the Drosophila larval NMJ. This technique requires customized fabrication of recording micropipettes, as well as a compound microscope equipped with a high magnification, long-distance water immersion objective, differential interference contrast (DIC) optics, and a fluorescent attachment. The recording electrode is positioned on the top of a selected synaptic bouton visualized with DIC optics, epi-fluorescence, or both. The advantage of this technique is that it allows monitoring the synaptic activity of a limited number of sites of release. The recording electrode has a diameter of several microns, and the release sites positioned outside of the electrode rim do not significantly affect the recorded currents. The recorded synaptic currents have fast kinetics and can be readily resolved. These advantages are especially important for the studies of mutant fly lines with enhanced spontaneous or asynchronous synaptic activity.


Asunto(s)
Drosophila/fisiología , Unión Neuromuscular/fisiología , Transmisión Sináptica/fisiología , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Larva , Unión Neuromuscular/metabolismo
14.
Elife ; 62017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895532

RESUMEN

The synaptic vesicle Ca2+ sensor Synaptotagmin binds Ca2+ through its two C2 domains to trigger membrane interactions. Beyond membrane insertion by the C2 domains, other requirements for Synaptotagmin activity are still being elucidated. To identify key residues within Synaptotagmin required for vesicle cycling, we took advantage of observations that mutations in the C2B domain Ca2+-binding pocket dominantly disrupt release from invertebrates to humans. We performed an intragenic screen for suppressors of lethality induced by expression of Synaptotagmin C2B Ca2+-binding mutants in Drosophila. This screen uncovered essential residues within Synaptotagmin that suggest a structural basis for several activities required for fusion, including a C2B surface implicated in SNARE complex interaction that is required for rapid synchronization and Ca2+ cooperativity of vesicle release. Using electrophysiological, morphological and computational characterization of these mutants, we propose a sequence of molecular interactions mediated by Synaptotagmin that promote Ca2+ activation of the synaptic vesicle fusion machinery.


Asunto(s)
Calcio/metabolismo , Vesículas Citoplasmáticas/metabolismo , Fusión de Membrana , Proteínas SNARE/metabolismo , Sinaptotagminas/metabolismo , Animales , Drosophila , Sinaptotagminas/genética
15.
Traffic ; 18(12): 825-839, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28941037

RESUMEN

Double C2 domain protein B (DOC2B) is a high-affinity Ca2+ sensor that translocates from the cytosol to the plasma membrane (PM) and promotes vesicle priming and fusion. However, the molecular mechanism underlying its translocation and targeting to the PM in living cells is not completely understood. DOC2B interacts in vitro with the PM components phosphatidylserine, phosphatidylinositol (4, 5)-bisphosphate [PI(4, 5)P2 ] and target SNAREs (t-SNAREs). Here, we show that PI(4, 5)P2 hydrolysis at the PM of living cells abolishes DOC2B translocation, whereas manipulations of t-SNAREs and other phosphoinositides have no effect. Moreover, we were able to redirect DOC2B to intracellular membranes by synthesizing PI(4, 5)P2 in those membranes. Molecular dynamics simulations and mutagenesis in the calcium and PI(4, 5)P2 -binding sites strengthened our findings, demonstrating that both calcium and PI(4, 5)P2 are required for the DOC2B-PM association and revealing multiple PI(4, 5)P2 -C2B interactions. In addition, we show that DOC2B translocation to the PM is ATP-independent and occurs in a diffusion-like manner. Our data suggest that the Ca2+ -triggered translocation of DOC2B is diffusion-driven and aimed at PI(4, 5)P2 -containing membranes.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Receptores Fc/metabolismo , Animales , Sitios de Unión , Dominios C2/fisiología , Calcio/metabolismo , Citosol/metabolismo , Fosfatidilserinas/metabolismo , Unión Proteica , Ratas
16.
Artículo en Inglés | MEDLINE | ID: mdl-28544556

RESUMEN

Synaptic transmission is dynamic, plastic, and highly regulated. Drosophila is an advantageous model system for genetic and molecular studies of presynaptic and postsynaptic mechanisms and plasticity. Electrical recordings of synaptic responses represent a wide-spread approach to study neuronal signaling and synaptic transmission. We discuss experimental techniques that allow monitoring synaptic transmission in Drosophila neuromuscular and central systems. Recordings of synaptic potentials or currents at the larval neuromuscular junction (NMJ) are most common and provide numerous technical advantages due to robustness of the preparation, large and identifiable muscles, and synaptic boutons which can be readily visualized. In particular, focal macropatch recordings combined with the analysis of neurosecretory quanta enable rigorous quantification of the magnitude and kinetics of transmitter release. Patch-clamp recordings of synaptic transmission from the embryonic NMJ enable overcoming the problem of lethality in mutant lines. Recordings from the adult NMJ proved instrumental in the studies of temperature-sensitive paralytic mutants. Genetic studies of behavioral learning in Drosophila compel an investigation of synaptic transmission in the central nervous system (CNS), including primary cultured neurons and an intact brain. Cholinergic and GABAergic synaptic transmission has been recorded from the Drosophila CNS both in vitro and in vivo. In vivo patch-clamp recordings of synaptic transmission from the neurons in the olfactory pathway is a very powerful approach, which has a potential to elucidate how synaptic transmission is associated with behavioral learning. WIREs Dev Biol 2017, 6:e277. doi: 10.1002/wdev.277 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Unión Neuromuscular/metabolismo , Transmisión Sináptica/fisiología , Animales , Drosophila , Proteínas de Drosophila/metabolismo , Electrofisiología , Neuronas/metabolismo
17.
J Neurosci ; 37(2): 383-396, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077717

RESUMEN

Synaptic vesicles fuse at morphological specializations in the presynaptic terminal termed active zones (AZs). Vesicle fusion can occur spontaneously or in response to an action potential. Following fusion, vesicles are retrieved and recycled within nerve terminals. It is still unclear whether vesicles that fuse spontaneously or following evoked release share similar recycling mechanisms. Genetic deletion of the SNARE-binding protein complexin dramatically increases spontaneous fusion, with the protein serving as the synaptic vesicle fusion clamp at Drosophila synapses. We examined synaptic vesicle recycling pathways at complexin null neuromuscular junctions, where spontaneous release is dramatically enhanced. We combined loading of the lipophilic dye FM1-43 with photoconversion, electron microscopy, and electrophysiology to monitor evoked and spontaneous recycling vesicle pools. We found that the total number of recycling vesicles was equal to those retrieved through spontaneous and evoked pools, suggesting that retrieval following fusion is partially segregated for spontaneous and evoked release. In addition, the kinetics of FM1-43 destaining and synaptic depression measured in the presence of the vesicle-refilling blocker bafilomycin indicated that spontaneous and evoked recycling pools partially intermix during the release process. Finally, FM1-43 photoconversion combined with electron microscopy analysis indicated that spontaneous recycling preferentially involves synaptic vesicles in the vicinity of AZs, whereas vesicles recycled following evoked release involve a larger intraterminal pool. Together, these results suggest that spontaneous and evoked vesicles use separable recycling pathways and then partially intermix during subsequent rounds of fusion. SIGNIFICANCE STATEMENT: Neurotransmitter release involves fusion of synaptic vesicles with the plasma membrane in response to an action potential, or spontaneously in the absence of stimulation. Upon fusion, vesicles are retrieved and recycled, and it is unclear whether recycling pathways for evoked and spontaneous vesicles are segregated after fusion. We addressed this question by taking advantage of preparations lacking the synaptic protein complexin, which have elevated spontaneous release that enables reliable tracking of the spontaneous recycling pool. Our results suggest that spontaneous and evoked recycling pathways are segregated during the retrieval process but can partially intermix during stimulation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Proteínas de Drosophila/deficiencia , Exocitosis/fisiología , Mutación/fisiología , Proteínas del Tejido Nervioso/deficiencia , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Masculino , Proteínas del Tejido Nervioso/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura
18.
J Neurosci ; 37(7): 1757-1771, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087765

RESUMEN

Synapsins are epilepsy susceptibility genes that encode phosphoproteins reversibly associated with synaptic vesicles. Synapsin II (SynII) gene deletion produces a deficit in inhibitory synaptic transmission, and this defect is thought to cause epileptic activity. We systematically investigated how SynII affects synchronous and asynchronous release components of inhibitory transmission in the CA1 region of the mouse hippocampus. We found that the asynchronous GABAergic release component is diminished in SynII-deleted (SynII(-)) slices. To investigate this defect at different interneuron subtypes, we selectively blocked either N-type or P/Q-type Ca2+ channels. SynII deletion suppressed the asynchronous release component at synapses dependent on N-type Ca2+ channels but not at synapses dependent on P/Q-type Ca2+ channels. We then performed paired double-patch recordings from inhibitory basket interneurons connected to pyramidal neurons and used cluster analysis to classify interneurons according to their spiking and synaptic parameters. We identified two cell subtypes, presumably parvalbumin (PV) and cholecystokinin (CCK) expressing basket interneurons. To validate our interneuron classification, we took advantage of transgenic animals with fluorescently labeled PV interneurons and confirmed that their spiking and synaptic parameters matched the parameters of presumed PV cells identified by the cluster analysis. The analysis of the release time course at the two interneuron subtypes demonstrated that the asynchronous release component was selectively reduced at SynII(-) CCK interneurons. In contrast, the transmission was desynchronized at SynII(-) PV interneurons. Together, our results demonstrate that SynII regulates the time course of GABAergic release, and that this SynII function is dependent on the interneuron subtype.SIGNIFICANCE STATEMENT Deletion of the neuronal protein synapsin II (SynII) leads to the development of epilepsy, probably due to impairments in inhibitory synaptic transmission. We systematically investigated SynII function at different subtypes of inhibitory neurons in the hippocampus. We discovered that SynII affects the time course of GABA release, and that this effect is interneuron subtype specific. Within one of the subtypes, SynII deficiency synchronizes the release and suppresses the asynchronous release component, while at the other subtype SynII deficiency suppresses the synchronous release component. These results reveal a new SynII function in the regulation of the time course of GABA release and demonstrate that this function is dependent on the interneuron subtype.


Asunto(s)
Hipocampo/citología , Interneuronas/fisiología , Sinapsinas/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Bloqueadores de los Canales de Calcio/farmacología , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/genética , Parvalbúminas/metabolismo , Sinapsis , Sinapsinas/genética , Transmisión Sináptica/efectos de los fármacos , omega-Agatoxina IVA/farmacología , omega-Conotoxina GVIA/farmacología
19.
Biophys J ; 111(9): 1954-1964, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806277

RESUMEN

Neuronal transmitters are released from nerve terminals via the fusion of synaptic vesicles with the plasma membrane. Vesicles attach to membranes via a specialized protein machinery composed of membrane-attached (t-SNARE) and vesicle-attached (v-SNARE) proteins that zipper together to form a coiled-coil SNARE bundle that brings the two fusing membranes into close proximity. Neurotransmitter release may occur either in response to an action potential or through spontaneous fusion. A cytosolic protein, Complexin (Cpx), binds the SNARE complex and restricts spontaneous exocytosis by acting as a fusion clamp. We previously proposed a model in which the interaction between Cpx and the v-SNARE serves as a spring to prevent premature zippering of the SNARE complex, thereby reducing the likelihood of fusion. To test this model, we combined molecular-dynamics (MD) simulations and site-directed mutagenesis of Cpx and SNAREs in Drosophila. MD simulations of the Drosophila Cpx-SNARE complex demonstrated that Cpx's interaction with the v-SNARE promotes unraveling of the v-SNARE off the core SNARE bundle. We investigated clamping properties in the syx3-69 paralytic mutant, which has a single-point mutation in the t-SNARE and displays enhanced spontaneous release. MD simulations demonstrated an altered interaction of Cpx with the SNARE bundle that hindered v-SNARE unraveling by Cpx, thus compromising clamping. We used our model to predict mutations that should enhance the ability of Cpx to prevent full assembly of the SNARE complex. MD simulations predicted that a weakened interaction between the Cpx accessory helix and the v-SNARE would enhance Cpx flexibility and thus promote separation of SNAREs, reducing spontaneous fusion. We generated transgenic Drosophila with mutations in Cpx and the v-SNARE that disrupted a salt bridge between these two proteins. As predicted, both lines demonstrated a selective inhibition in spontaneous release, suggesting that Cpx acts as a fusion clamp that restricts full SNARE zippering.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Fusión de Membrana , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Mutación Puntual , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Electricidad Estática , Vesículas Sinápticas/metabolismo
20.
Biophys J ; 108(9): 2258-69, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25954883

RESUMEN

Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼ 3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4-6 SNAREs actually increases the equilibrium distance.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas SNARE/química , Secuencia de Aminoácidos , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Ratas , Proteínas SNARE/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA