Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856801

RESUMEN

Bio-imaging is a crucial tool for researchers in the fields of cell biology and developmental biomedical sector. Among the various available imaging techniques, fluorescence based imaging stands out due to its high sensitivity and specificity. However, traditional fluorescent materials used in biological imaging often suffer from issues such as photostability and biocompatibility. Moreover, plant tissues contain compounds that cause autofluorescence and light scattering, which can hinder fluorescence microscopy effectiveness. This study explores the development of fluorescent carbon dots (Cm-CDs) synthesized from Citrus medica fruit extract for the fluorescence imaging of Vigna radiata root cells. The successful synthesis of CDs with an average size of 6.7 nm is confirmed by Transmission Electron Microscopy (TEM). The X-ray diffraction (XRD) analysis and raman spectroscopy indicated that the obtained CDs are amorphous in nature. The presence of various functional groups on the surface of CDs were identified by Fourier transform infrared (FTIR) spectra. The optical characteristics of Cm-CDs were studied by UV-Visible spectroscopy and photoluminescence spectroscopy. Cm-CDs demonstrated strong excitation-dependent fluorescence, good solubility, and effective penetration in to the Vigna radiata root cells with multicolor luminescence, and addressed autofluorescence issues. Additionally, a comparative analysis determined the optimal concentration for high-resolution, multi-color root cell imaging, with Cm-CD2 (2.5 mg/ml) exhibiting the highest photoluminescence (PL) intensity. These findings highlight the potential of Cm-CDs in enhancing direct endocytosis and overcoming autofluorescence in plant cell imaging, offering promising advancements for cell biology research.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124249, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38603957

RESUMEN

Quercetin is an important antioxidant with high bioactivity and it has been used as SARS-CoV-2 inhibitor significantly. Quercetin, one of the most abundant flavonoids in nature, has been in the spot of numerous experimental and theoretical studies in the past decade due to its great biological and medicinal importance. But there have been limited instances of employing quercetin and its derivatives as a fluorescent framework for specific detection of various cations and anions in the chemosensing field. Therefore, we have developed a novel chemosensor based on quercetin coupled benzyl ethers (QBE) for selective detection of Hg2+ with "naked-eye" colorimetric and "turn-on" fluorometric response. Initially QBE itself exhibited very weak fluorescence with low quantum yield (Φ = 0.009) due to operating photoinduced electron transfer (PET) and inhibition of excited state intramolecular proton transfer (ESIPT) as well as intramolecular charge transfer (ICT) within the molecule. But in presence of Hg2+, QBE showed a sharp increase in fluorescence intensity by 18-fold at wavelength 444 nm with high quantum yield (Φ = 0.159) for the chelation-enhanced fluorescence (CHEF) with coordination of Hg2+, which hampers PET within the molecule. The strong binding affinity of QBE towards Hg2+ has been proved by lower detection limit at 8.47 µM and high binding constant value as 2 × 104 M-1. The binding mechanism has been verified by DFT study, Cyclic voltammograms and Jobs plot analysis. For the practical application, the binding selectivity of QBE with Hg2+ has been capitalized in physiological medium to detect intracellular Hg2+ levels in living plant tissue by using green gram seeds. Thus, employing QBE as a fluorescent chemosensor for the specific identification of Hg2+ will pave the way for a novel approach to simplifying the creation of various chemosensors based on quercetin backbone for the precise detection of various biologically significant analytes.


Asunto(s)
Colorantes Fluorescentes , Mercurio , Quercetina , Espectrometría de Fluorescencia , Quercetina/análisis , Mercurio/análisis , Colorantes Fluorescentes/química , Humanos , Espectrometría de Fluorescencia/métodos , Límite de Detección
3.
Artículo en Inglés | MEDLINE | ID: mdl-38492149

RESUMEN

The phenolic, antioxidant and metabolic profiling of a new white variety guava fruit Arka Mridula (AM) was performed during its storage at the room temperature (28 ± 2 °C). The comparative profiles were generated at three ripening stages (pre-ripe, ripe and over-ripe) of the fruit. Generally, a steady decrease of the phenolic and antioxidant content from the pre-ripe to the ripe stage and a subsequent increase from the ripe to over-ripe stage was observed. Further, a powerful correlation between the phenolic content and antioxidant principles was noted through the principal component analysis. We could identify 53  compounds for the hydro-methanolic fruit extract through LC and GC-MS aided metabolic analysis, and the identified compounds were dominated by phenolics (~ 44%). The statistical analysis revealed that phytochemicals catechin, myricitrin, myricetin, kaempferol glycosides and n-hexadecanoic acid contributed significantly towards the ripening process of AM, during the storage. The present study is expected to provide important insight into the ripening biochemistry of AM. Subsequently, it may help in the future development of metabolically stable guava cultivars with extended post-harvest shelf life.

4.
Anal Methods ; 16(5): 676-685, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189149

RESUMEN

A novel dual-mode viscosity-sensitive and AIE-active fluorescent chemosensor based on the naphthalene coupled pyrene (NCP) moiety was designed and synthesized for the selective detection of OCl- and Cu2+. In non-viscous media, NCP exhibited weak fluorescence; however, with an increase in viscosity using various proportions of glycerol, the fluorescence intensity was enhanced to 461 nm with a 6-fold increase in fluorescence quantum yields, which could be utilized for the quantitative determination of viscosity. Interestingly, NCP exhibited novel AIE characteristics in terms of size and growth in H2O-CH3CN mixtures with high water contents and different volume percentage of water, which was investigated using fluorescence, DLS study and SEM analysis. Interestingly, this probe can also be effectively employed as a dual-mode fluorescent probe for light up fluorescent detection of OCl- and Cu2+ at different emission wavelengths of 439 nm and 457 nm via chemodosimetric and chelation pathways, respectively. The fast-sensing ability of NCP towards OCl- was shown by a low detection limit of 0.546 µM and the binding affinity of NCP with Cu2+ was proved by a low detection limit of 3.97 µM and a high binding constant of 1.66 × 103 M-1. The sensing mechanism of NCP towards OCl- and Cu2+ was verified by UV-vis spectroscopy, fluorescence analysis, 1H-NMR analysis, mass spectroscopy, DFT study and Job plot analysis. For practical applications, the binding of NCP with OCl- and Cu2+ was determined using a dipstick method and a cell imaging study in a physiological medium using green gram seeds.


Asunto(s)
Colorantes Fluorescentes , Agua , Colorantes Fluorescentes/química , Viscosidad , Análisis Espectral , Agua/química , Diagnóstico por Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...