Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(11): 13427-13439, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38524456

RESUMEN

Inorganic photoacids and photobases comprising of photoactive transition metal complexes (TMCs) offer the ability to modulate proton transfer reactions through light irradiation, while utilizing the excellent optical properties of the latter. This provides a powerful tool for precise control over chemical reactions and processes, with implications for both fundamental science and practical applications. In this contribution, we present a novel molecular architecture amending an Fe-NHC complex with a pendant quinoline, as a prototypical photobase, as a representative earth-abundant TMC based inorganic photobase. We characterize the excited-state properties and proton-transfer dynamics using steady-state absorption and emission spectroscopy as well as pump wavelength dependent transient absorption spectroscopy in various protic solvents. The kinetics and thermodynamics of proton transfer in the quinoline moiety are influenced by both the presence of the metal center and the choice of the solvent. Furthermore, we see indications of intramolecular energy transfer from the quinoline to the MLCT state as a limiting factor for panchromatic photobasicity of the complex.

2.
Molecules ; 27(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807559

RESUMEN

N-Heterocyclic carbenes (NHCs) have seen more and more use over the years. The go-to systems that are usually considered are derivatives of benzimidazole or imidazole. Caffeine possesses an imidazole unit and was already utilized as a carbene-type ligand; however, its use within a tridentate bis-NHC system has-to the best of our knowledge-not been reported so far. The synthesis of the ligand is straightforward and metal complexes are readily available via silver-salt metathesis. A platinum(II) and a palladium(II) complex were isolated and a crystal structure of the former was examined. For the Pt(II) complex, luminescence is observed in solid state as well as in solution.


Asunto(s)
Complejos de Coordinación , Compuestos Heterocíclicos , Cafeína , Complejos de Coordinación/química , Compuestos Heterocíclicos/química , Imidazoles/química , Ligandos
3.
Inorg Chem ; 60(12): 9157-9173, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34081456

RESUMEN

Photoactive metal complexes containing earth-abundant transition metals recently gained interest as photosensitizers in light-driven chemistry. In contrast to the traditionally employed ruthenium or iridium complexes, iron complexes developed to be promising candidates despite the fact that using iron complexes as photosensitizers poses an inherent challenge associated with the low-lying metal-centered states, which are responsible for ultrafast deactivation of the charge-transfer states. Nonetheless, recent developments of strongly σ-donating carbene ligands yielded highly promising systems, in which destabilized metal-centered states resulted in prolonged lifetimes of charge-transfer excited states. In this context, we introduce a series of novel homoleptic Fe-triazolylidene mesoionic carbene complexes. The excited-state properties of the complexes were investigated by time-resolved femtosecond transient absorption spectroscopy and quantum chemical calculations. Pump wavelength-dependent transient absorption reveals the presence of distinct excited-state relaxation pathways. We relate the excitation-wavelength-dependent branching of the excited-state dynamics into various reaction channels to solvent-dependent photodissociation following the population of dissociative metal centered states upon excitation at 400 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...