Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 984329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479250

RESUMEN

Although a large part of the genome is transcribed, only 1.9% has a protein-coding potential; most of the transcripts are non-coding RNAs such as snRNAs, tRNAs, and rRNAs that participate in mRNA processing and translation. In addition, there are small RNAs with a regulatory role, such as siRNAs, miRNAs, and piRNAs. Finally, the long non-coding RNAs (lncRNAs) are transcripts of more than 200 bp that can positively and negatively regulate gene expression (both in cis and trans), serve as a scaffold for protein recruitment, and control nuclear architecture, among other functions. An essential process regulated by lncRNAs is genome stability. LncRNAs regulate genes associated with DNA repair and chromosome segregation; they are also directly involved in the maintenance of telomeres and have recently been associated with the activity of the centromeres. In cancer, many alterations in lncRNAs have been found to promote genomic instability, which is a hallmark of cancer and is associated with resistance to chemotherapy. In this review, we analyze the most recent findings of lncRNA alterations in cancer, their relevance in genomic instability, and their impact on the resistance of tumor cells to anticancer therapy.

2.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955838

RESUMEN

During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.


Asunto(s)
Proteínas Cromosómicas no Histona , Histonas , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Histonas/metabolismo , Cinetocoros/metabolismo , Mitosis/genética , Procesamiento Proteico-Postraduccional
3.
Front Cell Dev Biol ; 10: 751367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359456

RESUMEN

RAS oncogenes are chief tumorigenic drivers, and their mutation constitutes a universal predictor of poor outcome and treatment resistance. Despite more than 30 years of intensive research since the identification of the first RAS mutation, most attempts to therapeutically target RAS mutants have failed to reach the clinic. In fact, the first mutant RAS inhibitor, Sotorasib, was only approved by the FDA until 2021. However, since Sotorasib targets the KRAS G12C mutant with high specificity, relatively few patients will benefit from this therapy. On the other hand, indirect approaches to inhibit the RAS pathway have revealed very intricate cascades involving feedback loops impossible to overcome with currently available therapies. Some of these mechanisms play different roles along the multistep carcinogenic process. For instance, although mutant RAS increases replicative, metabolic and oxidative stress, adaptive responses alleviate these conditions to preserve cellular survival and avoid the onset of oncogene-induced senescence during tumorigenesis. The resulting rewiring of cellular mechanisms involves the DNA damage response and pathways associated with oxidative stress, which are co-opted by cancer cells to promote survival, proliferation, and chemo- and radioresistance. Nonetheless, these systems become so crucial to cancer cells that they can be exploited as specific tumor vulnerabilities. Here, we discuss key aspects of RAS biology and detail some of the mechanisms that mediate chemo- and radiotherapy resistance of mutant RAS cancers through the DNA repair pathways. We also discuss recent progress in therapeutic RAS targeting and propose future directions for the field.

4.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328692

RESUMEN

The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome healing; nevertheless, the impact of this association has not been investigated during the carcinogenic process. Determining whether changes in TERRA expression are a cause or a consequence of cell transformation is a complex task because studies are usually carried out using either cancerous cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in TERRA homeostasis is a consequence of cellular transformation and that changes in its expression profile can lead to telomeric and genomic instability.


Asunto(s)
ARN Largo no Codificante , Homeostasis del Telómero , Cromatina/genética , Heterocromatina , Metilación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Telómero/genética , Telómero/metabolismo
5.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34739170

RESUMEN

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Satélite de ARN , Centrómero/genética , Centrómero/metabolismo , ADN Satélite/genética , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Satélite de ARN/genética , Regulación hacia Arriba
6.
Front Psychiatry ; 12: 753562, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938210

RESUMEN

Marijuana (Cannabis sp.) is among the most recurred controlled substances in the world, and there is a growing tendency to legalize its possession and use; however, the genotoxic effects of marijuana remain under debate. A clear definition of marijuana's genotoxic effects remains obscure by the simultaneous consumption of tobacco and other recreational substances. In order to assess the genotoxic effects of marijuana and to prevent the bias caused by the use of substances other than cannabis, we recruited marijuana users that were sub-divided into three categories: (1) users of marijuana-only (M), (2) users of marijuana and tobacco (M+T), and (3) users of marijuana plus other recreative substances or illicit drugs (M+O), all the groups were compared against a non-user control group. We quantified DNA damage by detection of γH2AX levels and quantification of micronuclei (MN), one of the best-established methods for measuring chromosomal DNA damage. We found increased levels of γH2AX in peripheral blood lymphocytes from the M and M+T groups, and increased levels of MNs in cultures from M+T group. Our results suggest a DNA damage increment for M and M+T groups but the extent of chromosomal damage (revealed here by the presence of MNs and NBuds) might be related to the compounds found in tobacco. We also observed an elevated nuclear division index in all marijuana users in comparison to the control group suggesting a cytostatic dysregulation caused by cannabis use. Our study is the first in Mexico to assess the genotoxicity of marijuana in mono-users and in combination with other illicit drugs.

7.
Cell Div ; 16(1): 6, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736484

RESUMEN

BACKGROUND: It has been reported that the oncoprotein E7 from human papillomavirus type 16 (HPV16-E7) can induce the excessive synthesis of centrosomes through the increase in the expression of PLK4, which is a transcriptional target of E2F1. On the other hand, it has been reported that increasing MPS1 protein stability can also generate an excessive synthesis of centrosomes. In this work, we analyzed the possible role of MPS1 in the amplification of centrosomes mediated by HPV16-E7. RESULTS: Employing qRT-PCR, Western Blot, and Immunofluorescence techniques, we found that E7 induces an increase in the MPS1 transcript and protein levels in the U2OS cell line, as well as protein stabilization. Besides, we observed that inhibiting the expression of MPS1 in E7 protein-expressing cells leads to a significant reduction in the number of centrosomes. CONCLUSIONS: These results indicate that the presence of the MPS1 protein is necessary for E7 protein to increase the number of centrosomes, and possible implications are discussed.

8.
Int J Infect Dis ; 105: 83-90, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33581365

RESUMEN

OBJECTIVES: The aim of this study was to investigate the feasibility of saliva sampling as a non-invasive and safer tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to compare its reproducibility and sensitivity with nasopharyngeal swab samples (NPS). The use of sample pools was also investigated. METHODS: A total of 2107 paired samples were collected from asymptomatic healthcare and office workers in Mexico City. Sixty of these samples were also analyzed in two other independent laboratories for concordance analysis. Sample processing and analysis of virus genetic material were performed according to standard protocols described elsewhere. A pooling analysis was performed by analyzing the saliva pool and the individual pool components. RESULTS: The concordance between NPS and saliva results was 95.2% (kappa 0.727, p = 0.0001) and 97.9% without considering inconclusive results (kappa 0.852, p = 0.0001). Saliva had a lower number of inconclusive results than NPS (0.9% vs 1.9%). Furthermore, saliva showed a significantly higher concentration of both total RNA and viral copies than NPS. Comparison of our results with those of the other two laboratories showed 100% and 97% concordance. Saliva samples are stable without the use of any preservative, and a positive SARS-CoV-2 sample can be detected 5, 10, and 15 days after collection when the sample is stored at 4 °C. CONCLUSIONS: The study results indicate that saliva is as effective as NPS for the identification of SARS-CoV-2-infected asymptomatic patients. Sample pooling facilitates the analysis of a larger number of samples, with the benefit of cost reduction.


Asunto(s)
COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Estudios Transversales , Humanos , Nasofaringe/virología , Reproducibilidad de los Resultados , Manejo de Especímenes
9.
Cell Death Discov ; 2: 16079, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27818790

RESUMEN

Spindle poisons activate the spindle assembly checkpoint and prevent mitotic exit until cells die or override the arrest. Several studies have focused on spindle poison-mediated cell death, but less is known about consequences in cells that survive a mitotic arrest. During mitosis, proteins such as CYCLIN B, SECURIN, BUB1 and SURVIVIN are degraded in order to allow mitotic exit, and these proteins are maintained at low levels in the next interphase. In contrast, exit from a prolonged mitosis depends only on degradation of CYCLIN B; it is not known whether the levels of other proteins decrease or remain high. Here, we analyzed the levels and localization of the BUB1 and SURVIVIN proteins in cells that escaped from a paclitaxel-mediated prolonged mitosis. We compared cells with a short arrest (HCT116 cells) with cells that spent more time in mitosis (HT29 cells) after paclitaxel treatment. BUB1 and SURVIVIN were not degraded and remained localized to the nuclei of HCT116 cells after a mitotic arrest. Moreover, BUB1 nuclear foci were observed; BUB1 did not colocalize with centromere proteins. In HT29 cells, the levels of BUB1 and SURVIVIN decreased during the arrest, and these proteins were not present in cells that reached the next interphase. Using time-lapse imaging, we observed morphological heterogeneity in HCT116 cells that escaped from the arrest; this heterogeneity was due to the cytokinesis-like mechanism by which the cells exited mitosis. Thus, our results show that high levels of BUB1 and SURVIVIN can be maintained after a mitotic arrest, which may promote resistance to cell death.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...