RESUMEN
This study aimed to assess the bacterial microbiota involved in the spoilage of pacu (Piaractus mesopotamics), patinga (female Piaractus mesopotamics x male Piaractus brachypomus), and tambacu (female Colossoma macropomum × male Piaractus mesopotamics) during ice and frozen storage. Changes in the microbiota of three fish species (N = 22) during storage were studied through 16S rRNA amplicon-based sequencing and correlated with volatile organic compounds (VOCs) and metabolites assessed by nuclear magnetic resonance (NMR). Storage conditions (time and temperature) affected the microbiota diversity in all fish samples. Fish microbiota comprised mainly of Pseudomonas sp., Brochothrix sp., Acinetobacter sp., Bacillus sp., Lactiplantibacillus sp., Kocuria sp., and Enterococcus sp. The relative abundance of Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter was positively correlated with the metabolic pathways of ether lipid metabolism while B. thermosphacta and P. fragi were correlated with metabolic pathways involved in amino acid metabolism. P. fragi was the most prevalent spoilage bacteria in both storage conditions (ice and frozen), followed by B. thermosphacta. Moreover, the relative abundance of identified Bacillus strains in fish samples stored in ice was positively correlated with the production of VOCs (1-hexanol, nonanal, octenol, and 2-ethyl-1-hexanol) associated with off-flavors. 1H NMR analysis confirmed that amino acids, acetic acid, and ATP degradation products increase over (ice) storage, and therefore considered chemical spoilage index of fish fillets.
Asunto(s)
Bacterias , Peces , Almacenamiento de Alimentos , Congelación , Microbiota , ARN Ribosómico 16S , Alimentos Marinos , Compuestos Orgánicos Volátiles , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Peces/microbiología , Brasil , Alimentos Marinos/microbiología , Alimentos Marinos/análisis , ARN Ribosómico 16S/genética , Hielo , Microbiología de Alimentos , Biodiversidad , FemeninoRESUMEN
Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.
Asunto(s)
Alicyclobacillus , Jugos de Frutas y Vegetales , Frutas , Cromatografía de Gases y Espectrometría de Masas , Guayacol , Esporas Bacterianas , Alicyclobacillus/aislamiento & purificación , Alicyclobacillus/genética , Alicyclobacillus/clasificación , Alicyclobacillus/crecimiento & desarrollo , Jugos de Frutas y Vegetales/microbiología , Guayacol/análogos & derivados , Guayacol/metabolismo , Guayacol/farmacología , Frutas/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/aislamiento & purificación , Microbiología de Alimentos , Contaminación de Alimentos/análisis , Brasil , Microextracción en Fase Sólida , Argentina , Malus/microbiología , Italia , Calor , Citrus sinensis/microbiologíaRESUMEN
This study aimed to assess the growth of Pseudomonas spp. and psychrotrophic bacteria in chilled Pacu (Piaractus mesopotamicus), a native South American fish, stored under chilling conditions (0 to 10 °C) through the use of predictive models under isothermal and non-isothermal conditions. Growth kinetic parameters, maximum growth rate (µmax, 1/h), lag time (tLag, h), and (Nmax, Log10 CFU/g) were estimated using the Baranyi and Roberts microbial growth model. Both kinetic parameters, growth rate and lag time, were significantly influenced by temperature (P < 0.05). The square root secondary model was used to describe the bacteria growth as a function of temperature. Secondary models, âµ = 0.016 (T + 10.13) and âµ =0.017 (T + 9.91) presented a linear correlation with R2 values >0.97 and were further validated under non-isothermal conditions. The model's performance was considered acceptable to predict the growth of Pseudomonas spp. and psychrotrophic bacteria in refrigerated Pacu fillets with bias and accuracy factors between 1.24 and 1.49 (fail-safe) and 1.45-1.49, respectively. Fish biomarkers and spoilage indicators were assessed during storage at 0, 4, and 10 °C. Volatile organic compounds, VOCs (1-hexanol, nonanal, octenol, and indicators 2-ethyl-1-hexanol) showed different behavior with storage time (P > 0.05). 1H NMR analysis confirmed increased enzymatic and microbial activity in Pacu fillets stored at 10 °C compared to 0 °C. The developed and validated models obtained in this study can be used as a tool for decision-making on the shelf-life and quality of refrigerated Pacu fillets stored under dynamic conditions from 0 to 10 °C.
Asunto(s)
Bacterias , Pseudomonas , Animales , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética , Temperatura , Microbiología de Alimentos , Conservación de Alimentos , Recuento de Colonia Microbiana , Almacenamiento de AlimentosRESUMEN
This study aimed to evaluate the occurrence and diversity of yeasts in frozen concentrated orange juice (FCOJ) and assess the resistance of yeasts to peracetic acid. One thousand five hundred (nâ¯=â¯1500) samples of frozen concentrated orange juice (FCOJ) were analyzed, and 280 yeast strains were isolated and identified. Candida represented 37% of all isolates, and the main species identified were Candida pseudointermedia and C. orthopsilosis. Other yeasts identified were Starmerella, Wickerhamiella, Wickerhamiella, Clavispora, Kodamaea, Meyerozyma, Rhodotorula, Trichosporon, Wickerhamomyces, Kluyveromyces, Hanseniaspora, Saccharomyces, Torulaspora, and Zygosaccharomyces. The exogenous origin of the contamination in FCOJ samples analyzed was shown by the high diversity, corroborated by the Simpson (D) and Shannon (H') indices. From a total of 227 yeasts strains tested, more than 20% were able to withstand peracetic acid concentrations >200â¯ppm, with emphasis on W. anomalus (300â¯ppm), W. sergipensis (350â¯ppm), C. rugopelliculosa (350â¯ppm), K. marxianus (450â¯ppm), C. parapsilosis (500â¯ppm), C. pseudointermedia (500â¯ppm), W. sorbosivorans (500â¯ppm), C. boleticola (600â¯ppm), S. cerevisiae (700â¯ppm) and C. orthopsilosis (750â¯ppm). This study adds novel data regarding the occurrence and diversity of yeasts present in FCOJ and their resistance to a chemical compound commonly employed in the sanitization of processing and distribution premises and vehicles. These findings are essential to support the development of measures for proper mitigation of contamination of orange juice towards reducing the risks of spoilage by yeasts during FCOJ transportation/storage or when FCOJ is used as an ingredient.