Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Sustain ; 2(4): 975-987, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38585331

RESUMEN

PU foams are versatile materials that find applications in a wide range of products, from upholstery to packaging and construction. These foams consist primarily of two components, polyol and prepolymer, and their concentrations play a crucial role in determining their physical and mechanical properties. A second-order mixture design approach is used in this work to identify the significant components and their contributions on the physical-mechanical properties of biodegradable castor oil-based foams. The experimental design includes three components: two types of polyols and one prepolymer. These components are varied in nine distinct conditions to evaluate their effects on properties such as expansion rate, bulk density, compressive strength, and tensile strength. The Scheffé's quadratic model coefficients exhibit R-squared values higher than 0.84 in most cases. Chemical analysis using infrared spectroscopy confirms the successful formation of the urethane bond during the manufacturing process. The biobased foams developed in this work have densities ranging between 61 and 100 kg m-3, compressive modulus of 11-15 MPa and compressive strength between 273 and 429 kPa. The tensile modulus varies between 3.2 and 4.9 MPa, with a tensile strength in the range of 370-500 kPa. These results highlight the potential of biodegradable castor oil-based foams as promising alternative materials to traditional synthetic foams.

2.
Bioresour Technol ; 345: 126477, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34864172

RESUMEN

The use of lignocellulosic biomass (LCB) as feedstock has received increasing attention as an alternative to fossil-based refineries. Initial steps such as pretreatment and enzymatic hydrolysis are essential to breakdown the complex structure of LCB to make the sugar molecules available to obtain bioproducts by fermentation. However, these steps increase the cost of the bioproduct and often reduces its competitiveness against synthetic products. Currently, the use of surfactants has shown considerable potential to enhance lignocellulosic biomass processing. This review addresses the main mechanisms and role of surfactants as key molecules in various steps of biorefinery processes, viz., increasing the removal of lignin and hemicellulose during the pretreatments, increasing enzymatic stability and enhancing the accessibility of enzymes to the polymeric fractions, and improving the downstream process during fermentation. Further, technical advances, challenges in application of surfactants, and future perspectives to augment the production of several high value-added bioproducts have been discussed.


Asunto(s)
Biocombustibles , Tensoactivos , Biomasa , Fermentación , Hidrólisis , Lignina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...