Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(9): 6028-6040, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38370455

RESUMEN

Norovirus (NoV) infection is one of the most common non-bacterial causes of gastroenteritis among the population worldwide. From the point of view of medical diagnostics, it is important to develop a system that would sensitively and selectively detect norovirus from a patient's sample in order to control and limit its spread. In this paper, we present a stable and sensitive NoV (mouse model) detection matrix in infected food samples. The bio-platform was made of a modified gold electrode with a self-assembled l-cysteine monolayer, covered with gold nanoparticles, a linker and an antibody specific to the VP1 surface protein of the virus. Binding of the VP1 protein to the antibody caused a decrease in the current strength confirmed by electrochemical techniques - cyclic voltammetry (CV) and differential pulse voltammetry. The reduction of the current was proportional to the concentration of NoV sample. The biosensors showed high sensitivity and linearity in a range from 1 × 10-9 to 1 × 10-18 TCID50, with the detection limit of 1 × 10-18 TCID50. CV showed a diffusion-controlled process. In addition, each modification step was confirmed by scanning electron microscopy, electrochemical impedance spectroscopy, and CV. The described immunosensor showed excellent recovery values, good linearity and long-term stability, crucial parameters for biosensor construction.

2.
Biometals ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286956

RESUMEN

The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.

3.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679398

RESUMEN

This article presents a novel and selective electrochemical bioassay with antibody and laccase for the determination of free thyroid hormone (free triiodothyronine, fT3). The biosensor was based on a glassy carbon electrode modified with a Fe3O4@graphene nanocomposite with semiconducting properties, an antibody (anti-PDIA3) with high affinity for fT3, and laccase, which was responsible for catalyzing the redox reaction of fT3. The electrode modification procedure was investigated using a cyclic voltammetry technique, based on the response of the peak current after modifications. All characteristic working parameters of the developed biosensor were analyzed using differential pulse voltammetry. Obtained experimental results showed that the biosensor revealed a sensitive response to fT3 in a concentration range of 10-200 µM, a detection limit equal to 27 nM, and a limit of quantification equal to 45.9 nM. Additionally, the constructed biosensor was selective towards fT3, even in the presence of interference substances: ascorbic acid, tyrosine, and levothyroxine, and was applied for the analysis of fT3 in synthetic serum samples with excellent recovery results. The designed biosensor also exhibited good stability and can find application in future medical diagnostics.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanocompuestos , Grafito/química , Lacasa/química , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Técnicas Biosensibles/métodos , Hormonas Tiroideas , Electrodos , Límite de Detección
4.
RSC Adv ; 12(39): 25342-25353, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199318

RESUMEN

The main goal of the presented study was to design a biosensor-based system for epinephrine (EP) detection using a poly-thiophene derivative and tyrosinase as a biorecognition element. We compared two different electroanalytical techniques to select the most prominent technique for analyzing the neurotransmitter. The prepared biosensor system exhibited good parameters; the differential pulse (DPV) technique presented a wide linear range (1-20 µM and 30-200 µM), with a low detection limit (0.18 nM and 1.03 nM). In the case of chronoamperometry (CA), a high signal-to-noise ratio and lower reproducibility were observed, causing a less broad linear range (10-200 µM) and a higher detection limit (125 nM). Therefore, the DPV technique was used for the calculation of sensitivity (0.0011 µA mM-1 cm-2), stability (49 days), and total surface coverage (4.18 × 10-12 mol cm-2). The biosensor also showed very high selectivity in the presence of common interfering species (i.e. ascorbic acid, uric acid, norepinephrine, dopamine) and was successfully applied for EP determination in a pharmaceutical sample.

5.
ACS Omega ; 7(38): 33749-33768, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188279

RESUMEN

The study of neurotransmitters and stress hormones allows the determination of indicators of the current stress load in the body. These species also create a proper strategy of stress protection. Nowadays, stress is a general factor that affects the population, and it may cause a wide range of serious disorders. Abnormalities in the level of neurohormones, caused by chronic psychological stress, can occur in, for instance, corporate employees, health care workers, shift workers, policemen, or firefighters. Here we present a new nanomaterials-based sensors technology development for the determination of neurohormones. We focus on fluorescent sensors/biosensors that utilize nanomaterials, such as quantum dots or carbon nanomaterials. Nanomaterials, owing to their diversity in size and shape, have been attracting increasing attention in sensing or bioimaging. They possess unique properties, such as fluorescent, electronic, or photoluminescent features. In this Review, we summarize new trends in adopting nanomaterials for applications in fluorescent sensors for neurohormone monitoring.

6.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204217

RESUMEN

In this paper, the study of surface modification of two-dimensional (2D), non-luminescent CdS nanoplates (NPLs) by thiol-containing ligands is presented. We show that a process of twophase transfers with appropriate ligand exchange transforms non-luminescent NPLs into spherical CdS nanoparticles (NPs) exhibiting a blue photoluminescence with exceptionally high quantum yield ~90%. In the process, transfer from inorganic solvent to water is performed, with appropriately selected ligand molecules and pH values (forward phase transfer), which produces NPs with modified size and shape. Then, in reverse phase transfer, NPs are transferred back to toluene due to surface modification by combined Cd (OL)2 and Cd (Ac)2. As a result, spherical NPs are formed (average diameter between 4 and 6 nm) with PL QY as high as 90%. This is unique for core only CdS NPs without inorganic shell.


Asunto(s)
Compuestos de Cadmio/química , Nanopartículas/química , Puntos Cuánticos/química , Sulfuros/química , Fenómenos Químicos , Técnicas de Química Sintética , Nanopartículas/ultraestructura , Transición de Fase , Análisis Espectral
7.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198611

RESUMEN

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Asunto(s)
Técnicas Biosensibles , Nanofibras/química , Nanotecnología/métodos , Electroquímica , Glucosa/análisis
8.
Molecules ; 26(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916125

RESUMEN

Over the past two decades, both fundamental and applied research in conducting polymers have grown rapidly. Conducting polymers (CPs) are unique due to their ease of synthesis, environmental stability, and simple doping/dedoping chemistry. Electrically conductive silicone polymers are the current state-of-the-art for, e.g., optoelectronic materials. The combination of inorganic elements and organic polymers leads to a highly electrically conductive composite with improved thermal stability. Silicone-based materials have a set of extremely interesting properties, i.e., very low surface energy, excellent gas and moisture permeability, good heat stability, low-temperature flexibility, and biocompatibility. The most effective parameters constructing the physical properties of CPs are conjugation length, degree of crystallinity, and intra- and inter-chain interactions. Conducting polymers, owing to their ease of synthesis, remarkable environmental stability, and high conductivity in the doped form, have remained thoroughly studied due to their varied applications in fields like biological activity, drug release systems, rechargeable batteries, and sensors. For this reason, this review provides an overview of organosilicon polymers that have been reported over the past two decades.

9.
Nanotechnology ; 32(7): 075705, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33105119

RESUMEN

The results presented in this paper show how the optical properties and colloidal stability of quantum dots (QDs) vary depending on pH conditions. For this investigation, as-synthesized hydrophobic CdSe/CdS QDs were transferred to an aqueous medium by surface modification with 3-mercaptopropionic acid. The ligand exchange procedure was applied under three different pH conditions: acidic, neutral and alkaline, to obtain three kinds of hydrophilic QDs dispersed in phosphate buffer. The efficiency of the functionalization of QDs was estimated based on the changes in ABS and the highest value was obtained under acidic conditions (45%). The efficiency of photoluminescence (PL) was also best preserved under these conditions, although it was 30 times less than the PL of hydrophobic QDs. Then, all three kinds of hydrophilic QDs were dispersed in solutions with a wide range of pH (2-12) and investigated by absorbance and PL measurements. The results show that QDs subjected to a ligand exchange procedure are characterized by intensive PL at the selected pH values, which correspond to pKa of the ligand. This phenomenon is independent of the pH at which the ligand exchange procedure is conducted. Moreover, it was found that the PL intensity is preserved during the experiment for QDs functionalized under neutral conditions, whereas it decreases for acidic and increases for alkaline conditions.

10.
Sensors (Basel) ; 20(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823962

RESUMEN

Although neurotransmitters are present in human serum at the nM level, any dysfunction of the catecholamines concentration may lead to numerous serious health problems. Due to this fact, rapid and sensitive catecholamines detection is extremely important in modern medicine. However, there is no device that would measure the concentration of these compounds in body fluids. The main goal of the present study is to design a simple as possible, cost-effective new biosensor-based system for the detection of neurotransmitters, using nontoxic reagents. The miniature Au-E biosensor was designed and constructed through the immobilization of tyrosinase on an electroactive layer of cysteamine and carbon nanoparticles covering the gold electrode. This sensing arrangement utilized the catalytic oxidation of norepinephrine (NE) to NE quinone, measured with voltammetric techniques: cyclic voltammetry and differential pulse voltammetry. The prepared bio-system exhibited good parameters: a broad linear range (1-200 µM), limit of detection equal to 196 nM, limit of quantification equal to 312 nM, and high selectivity and sensitivity. It is noteworthy that described method was successfully applied for NE determination in real samples.


Asunto(s)
Técnicas Biosensibles , Carbono/química , Técnicas Electroquímicas , Monofenol Monooxigenasa/química , Norepinefrina/análisis , Análisis Costo-Beneficio , Electrodos , Oro , Humanos , Límite de Detección
11.
Polymers (Basel) ; 12(5)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443618

RESUMEN

In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials' immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.

12.
Sensors (Basel) ; 20(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151107

RESUMEN

A novel fluorescence-sensing pathway for epinephrine (EP) detection was investigated. The ceramic-based miniature biosensor was developed through the immobilization of an enzyme (laccase, tyrosinase) on a polymer-poly-(2,6-di([2,2'-bithiophen]-5-yl)-4-(5-hexylthiophen-2-yl)pyridine), based on low temperature cofired ceramics technology (LTCC). The detection procedure was based on the oxidation of the substrate, i.e., in the presence of the enzyme. An alternative enzyme-free system utilized the formation of a colorful complex between Fe2+ ions and epinephrine molecules. With the optimized conditions, the analytical performance illustrated high sensitivity and selectivity in a broad linear range with a detection limit of 0.14-2.10 nM. Moreover, the strategy was successfully used for an EP injection test with labeled pharmacological samples.

13.
Sensors (Basel) ; 20(2)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940833

RESUMEN

A convenient electrochemical sensing pathway was investigated for neurotransmitter detection based on newly synthesized silole derivatives and laccase/horseradish-peroxidase-modified platinum (Pt)/gold (Au) electrodes. The miniature neurotransmitter's biosensors were designed and constructed via the immobilization of laccase in an electroactive layer of the Pt electrode coated with poly(2,6-bis(3,4-ethylenedioxythiophene)-4-methyl-4-octyl-dithienosilole) and laccase for serotonin (5-HT) detection, and a Au electrode modified with the electroconducting polymer poly(2,6-bis(selenophen-2-yl)-4-methyl-4-octyl-dithienosilole), along with horseradish peroxidase (HRP), for dopamine (DA) monitoring. These sensing arrangements utilized the catalytic oxidation of neurotransmitters to reactive quinone derivatives (the oxidation process was provided in the enzymes' presence). Under the optimized conditions, the analytical performance demonstrated a convenient degree of sensitivity: 0.0369 and 0.0256 µA mM-1 cm-2, selectivity in a broad linear range (0.1-200) × 10-6 M) with detection limits of ≈48 and ≈73 nM (for the serotonin and dopamine biosensors, respectively). Moreover, the method was successfully applied for neurotransmitter determination in the presence of interfering compounds (ascorbic acid, L-cysteine, and uric acid).


Asunto(s)
Peroxidasa de Rábano Silvestre/metabolismo , Lacasa/metabolismo , Neurotransmisores/análisis , Técnicas Biosensibles , Catálisis , Dopamina/orina , Técnicas Electroquímicas , Electrodos , Enzimas Inmovilizadas/metabolismo , Oro/química , Concentración de Iones de Hidrógeno , Límite de Detección , Microscopía de Fuerza Atómica , Oxidación-Reducción , Platino (Metal)/química , Polímeros/química , Serotonina/orina , Compuestos de Silicona/química
14.
RSC Adv ; 10(15): 9079-9087, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35496550

RESUMEN

A convenient electrochemical sensing pathway for 17ß-estradiol detection was investigated. The system is based on a conducting polymer and horseradish peroxidase (HRP) modified platinum (Pt) electrode. The miniature estradiol biosensor was developed and constructed through the immobilization of HRP in an electroactive surface of the electrode covered with electroconducting polymer - poly(4,7-bis(5-(3,4-ethylenedioxythiophene)thiophen-2-yl)benzothiadiazole). The detection strategy is based on the fact that 17ß-estradiol (E2) and pyrocatechol (H2Q) are co-substrates for the HRP enzyme. HRP, which does not react with E2, in the presence of H2O2 catalyses the oxidation of H2Q to o-benzoquinone (Q). With the optimized conditions, such constructed biosensing system demonstrated a convenient level of sensitivity, selectivity in a broad linear range - 0.1 to 200 µM with a detection limit of 105 nM. Furthermore, the method was successfully applied for hormone detection in the presence of potential interfering compounds (ascorbic acid, estriol, estrone, uric acid and cholesterol).

15.
RSC Adv ; 10(45): 27024, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35515764

RESUMEN

[This corrects the article DOI: 10.1039/C9RA09902F.].

16.
Sensors (Basel) ; 19(3)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704068

RESUMEN

This paper compares two types of microfluidic sensors that are designed for operation in ISM (Industrial, Scientific, Medical) bands at microwave frequencies of 2.45 GHz and 5.8 GHz. In the case of the first sensor, the principle of operation is based on the resonance phenomenon in a microwave circuit filled with a test sample. The second sensor is based on the interferometric principle and makes use of the superposition of two coherent microwave signals, where only one goes through a test sample. Both sensors are monolithic structures fabricated using low temperature co-fired ceramics (LTCCs). The LTCC-based microwave-microfluidic sensor properties are examined and compared by measuring their responses for various concentrations of two types of test fluids: one is a mixture of water/ethanol, and the other is dopamine dissolved in a buffer solution. The experiments show a linear response for the LTCC-based microwave-microfluidic sensors as a function of the concentration of the components in both test fluids.

17.
Nanomaterials (Basel) ; 9(2)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717393

RESUMEN

Fundamentals of quantum dots (QDs) sensing phenomena show the predominance of these fluorophores over standard organic dyes, mainly because of their unique optical properties such as sharp and tunable emission spectra, high emission quantum yield and broad absorption. Moreover, they also indicate no photo bleaching and can be also grown as no blinking emitters. Due to these properties, QDs may be used e.g., for multiplex testing of the analyte by simultaneously detecting multiple or very weak signals. Physico-chemical mechanisms used for analyte detection, like analyte stimulated QDs aggregation, nonradiative Förster resonance energy transfer (FRET) exhibit a number of QDs, which can be applied in sensors. Quantum dots-based sensors find use in the detection of ions, organic compounds (e.g., proteins, sugars, volatile substances) as well as bacteria and viruses.

18.
Sensors (Basel) ; 18(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042294

RESUMEN

The clinical applications of sensing tools (i.e., biosensors) for the monitoring of physiologically important analytes are very common. Nowadays, the biosensors are being increasingly used to detect physiologically important analytes in real biological samples (i.e., blood, plasma, urine, and saliva). This review focuses on biosensors that can be applied to continuous, time-resolved measurements with fluorescence. The material presents the fluorescent biosensors for the detection of neurotransmitters, hormones, and other human metabolites as glucose, lactate or uric acid. The construction of microfluidic devices based on fluorescence uses a variety of materials, fluorescent dyes, types of detectors, excitation sources, optical filters, and geometrical systems. Due to their small size, these devices can perform a full analysis. Microfluidics-based technologies have shown promising applications in several of the main laboratory techniques, including blood chemistries, immunoassays, nucleic-acid amplification tests. Of the all technologies that are used to manufacture microfluidic systems, the LTCC technique seems to be an interesting alternative. It allows easy integration of electronic and microfluidic components on a single ceramic substrate. Moreover, the LTCC material is biologically and chemically inert, and is resistant to high temperature and pressure. The combination of all these features makes the LTCC technology particularly useful for implementation of fluorescence-based detection in the ceramic microfluidic systems.


Asunto(s)
Técnicas Biosensibles/métodos , Líquidos Corporales/química , Colorantes Fluorescentes/análisis , Animales , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica
19.
J Fluoresc ; 21(4): 1625-33, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21279539

RESUMEN

The benzothiadiazole-arylene alternating conjugated oligomers have been designed and synthesized via Suzuki coupling reaction. The structures and properties of the conjugated oligomers were characterized by (1)HNMR, (13)CNMR, UV-vis absorption spectroscopy, photoluminescence (PL) spectroscopy. The luminescent measurements demonstrate that polybenzothiadiazoles are good chromophores able to form thin films by Langmuir-Blodgett (LB) technique, making them suitable for further applications. Also the electrical properties of obtained films confirm the good potential of these novel aryl-based π-conjugated polymers for the development of various electrical and electrochemical solid-state devices.


Asunto(s)
Tiadiazoles/química , Electroquímica , Mediciones Luminiscentes , Estructura Molecular , Estereoisomerismo , Tiadiazoles/síntesis química
20.
J Fluoresc ; 21(1): 169-78, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20625802

RESUMEN

A few new phenoxazine-based conjugated monomers were synthesized, characterized, and successfully used as semiconducting materials. The phenoxazine-based oligomers have low ionization potentials or high-lying HOMO levels (~4.7 eV), which were estimated from cyclic voltammetry. Conjugated oligomers offer good film-forming, mechanical and optical properties connected with their wide application. These results demonstrate that phenoxazine-based conjugated mers are a promising type of semiconducting and luminescent structures able to be used as thin films in organic electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...