Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298523

RESUMEN

Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.


Asunto(s)
Corticosterona , MicroARNs , Ratones , Humanos , Animales , Corticosterona/farmacología , Corticosterona/metabolismo , Hidrocortisona/metabolismo , Hipocampo/metabolismo , MicroARNs/metabolismo , Plasticidad Neuronal
2.
Cells ; 11(2)2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35053378

RESUMEN

Nicotine addiction develops predominantly during human adolescence through smoking. Self-administration experiments in rodents verify this biological preponderance to adolescence, suggesting evolutionary-conserved and age-defined mechanisms which influence the susceptibility to nicotine addiction. The hippocampus, a brain region linked to drug-related memory storage, undergoes major morpho-functional restructuring during adolescence and is strongly affected by nicotine stimulation. However, the signaling mechanisms shaping the effects of nicotine in young vs. adult brains remain unclear. MicroRNAs (miRNAs) emerged recently as modulators of brain neuroplasticity, learning and memory, and addiction. Nevertheless, the age-dependent interplay between miRNAs regulation and hippocampal nicotinergic signaling remains poorly explored. We here combined biophysical and pharmacological methods to examine the impact of miRNA-132/212 gene-deletion (miRNA-132/212-/-) and nicotine stimulation on synaptic functions in adolescent and mature adult mice at two hippocampal synaptic circuits: the medial perforant pathway (MPP) to dentate yrus (DG) synapses (MPP-DG) and CA3 Schaffer collaterals to CA1 synapses (CA3-CA1). Basal synaptic transmission and short-term (paired-pulse-induced) synaptic plasticity was unaltered in adolescent and adult miRNA-132/212-/- mice hippocampi, compared with wild-type controls. However, nicotine stimulation promoted CA3-CA1 synaptic potentiation in mature adult (not adolescent) wild-type and suppressed MPP-DG synaptic potentiation in miRNA-132/212-/- mice. Altered levels of CREB, Phospho-CREB, and acetylcholinesterase (AChE) expression were further detected in adult miRNA-132/212-/- mice hippocampi. These observations propose miRNAs as age-sensitive bimodal regulators of hippocampal nicotinergic signaling and, given the relevance of the hippocampus for drug-related memory storage, encourage further research on the influence of miRNAs 132 and 212 in nicotine addiction in the young and the adult brain.


Asunto(s)
Envejecimiento/genética , Hipocampo/fisiología , MicroARNs/metabolismo , Plasticidad Neuronal/genética , Nicotina/farmacología , Acetilcolinesterasa/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
3.
Cells ; 10(7)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34359879

RESUMEN

Cerebral ischemia and its sequelae, which include memory impairment, constitute a leading cause of disability worldwide. Micro-RNAs (miRNA) are evolutionarily conserved short-length/noncoding RNA molecules recently implicated in adaptive/maladaptive neuronal responses to ischemia. Previous research independently implicated the miRNA-132/212 cluster in cholinergic signaling and synaptic transmission, and in adaptive/protective mechanisms of neuronal responses to hypoxia. However, the putative role of miRNA-132/212 in the response of synaptic transmission to ischemia remained unexplored. Using hippocampal slices from female miRNA-132/212 double-knockout mice in an established electrophysiological model of ischemia, we here describe that miRNA-132/212 gene-deletion aggravated the deleterious effect of repeated oxygen-glucose deprivation insults on synaptic transmission in the dentate gyrus, a brain region crucial for learning and memory functions. We also examined the effect of miRNA-132/212 gene-deletion on the expression of key mediators in cholinergic signaling that are implicated in both adaptive responses to ischemia and hippocampal neural signaling. miRNA-132/212 gene-deletion significantly altered hippocampal AChE and mAChR-M1, but not α7-nAChR or MeCP2 expression. The effects of miRNA-132/212 gene-deletion on hippocampal synaptic transmission and levels of cholinergic-signaling elements suggest the existence of a miRNA-132/212-dependent adaptive mechanism safeguarding the functional integrity of synaptic functions in the acute phase of cerebral ischemia.


Asunto(s)
Secuencia de Bases , Isquemia Encefálica/genética , Giro Dentado/metabolismo , MicroARNs/genética , Eliminación de Secuencia , Acetilcolina/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Giro Dentado/patología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación de la Expresión Génica , Glucosa/deficiencia , Glucosa/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/metabolismo , Microtomía , Oxígeno/farmacología , Técnicas de Placa-Clamp , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Transmisión Sináptica , Técnicas de Cultivo de Tejidos
4.
Food Funct ; 9(3): 1532-1544, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29431797

RESUMEN

While the consumption of caffeine and cocoa has been associated with a variety of health benefits to humans, some authors have proposed that excessive caffeine intake may increase the frequency of epileptic seizures in humans and reduce the efficiency of antiepileptic drugs. Little is known, however, about the proconvulsant potential of the sustained, excessive intake of cocoa on hippocampal neural circuits. Using the mouse as an experimental model, we examined the effects of the chronic consumption of food enriched in cocoa-based dark chocolate on motor and mood-related behaviours as well as on the excitability properties of hippocampal neurons. Cocoa food enrichment did not affect body weights or mood-related behaviours but rather promoted general locomotion and improved motor coordination. However, ex vivo electrophysiological analysis revealed a significant enhancement in seizure-like population spike bursting at the neurogenic dentate gyrus, which was paralleled by a significant reduction in the levels of GABA-α1 receptors thus suggesting that an excessive dietary intake of cocoa-enriched food might alter some of the synaptic elements involved in epileptogenesis. These data invite further multidisciplinary research aiming to elucidate the potential deleterious effects of chocolate abuse on behaviour and brain hyperexcitability.


Asunto(s)
Cacao/efectos adversos , Chocolate/efectos adversos , Hipocampo/fisiopatología , Convulsiones/etiología , Animales , Cacao/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsiones/metabolismo
5.
Neurobiol Stress ; 4: 34-43, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27981188

RESUMEN

Major depressive disorder (MDD) is one of the most debilitating psychiatric diseases, affecting a large percentage of the population worldwide. Currently, the underlying pathomechanisms remain incompletely understood, hampering the development of critically needed alternative therapeutic strategies, which further largely depends on the availability of suitable model systems. Here we used a mouse model of early life stress - a precipitating factor for the development of MDD - featuring infectious stress through maternal immune activation (MIA) by polyinosinic:polycytidilic acid (Poly(I:C)) to examine epigenetic modulations as potential molecular correlates of the alterations in brain structure, function and behavior. We found that in adult female MIA offspring anhedonic behavior was associated with modulations of the global histone acetylation profile in the hippocampus. Morevoer, specific changes at the promoter and in the expression of the serotonin transporter (SERT), critically involved in the etiology of MDD and pharmacological antidepressant treatment were detected. Furthermore, an accompanying reduction in hippocampal levels of histone deacetylase (HDAC) 1 was observed in MIA as compared to control offspring. Based on these results we propose a model in which the long-lasting impact of MIA on depression-like behavior and associated molecular and cellular aberrations in the offspring is brought about by the modulation of epigenetic processes and consequent enduring changes in gene expression. These data provide additional insights into the principles underlying the impact of early infectious stress on the development of MDD and may contribute to the development of new targets for antidepressant therapy.

6.
Ann Med ; 48(8): 652-668, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27558977

RESUMEN

INTRODUCTION: Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. MATERIALS AND METHODS: Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. RESULTS: Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. DISCUSSION: This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology. Key messages Podoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions. Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation. Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well as a role for podoplanin in plasticity-related brain neuronal functions is here proposed.


Asunto(s)
Hipocampo/fisiología , Glicoproteínas de Membrana/fisiología , Memoria/fisiología , Plasticidad Neuronal , Animales , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones
7.
Ann Med ; 48(1-2): 17-27, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26679264

RESUMEN

INTRODUCTION: Disturbances of circadian rhythms are a key symptom of mood and anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) - commonly used antidepressant drugs - also modulate aspects of circadian rhythmicity. However, their potential to restore circadian disturbances in depression remains to be investigated. MATERIALS AND METHODS: The effects of the SSRI fluoxetine on genetically based, depression-related circadian disruptions at the behavioral and molecular level were examined using mice selectively bred for high anxiety-related and co-segregating depression-like behavior (HAB) and normal anxiety/depression behavior mice (NAB). RESULTS: The length of the circadian period was increased in fluoxetine-treated HAB as compared to NAB mice while the number of activity bouts and light-induced entrainment were comparable. No difference in hippocampal Cry2 expression, previously reported to be dysbalanced in untreated HAB mice, was observed, while Per2 and Per3 mRNA levels were higher in HAB mice under fluoxetine treatment. DISCUSSION: The present findings provide evidence that fluoxetine treatment normalizes disrupted circadian locomotor activity and clock gene expression in a genetic mouse model of high trait anxiety and depression. An interaction between the molecular mechanisms mediating the antidepressant response to fluoxetine and the endogenous regulation of circadian rhythms in genetically based mood and anxiety disorders is proposed.


Asunto(s)
Ansiedad/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , Fluoxetina/farmacología , Hipocampo/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Ritmo Ultradiano/efectos de los fármacos , Animales , Ansiedad/genética , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Criptocromos/metabolismo , Trastorno Depresivo/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Luz , Ratones
9.
Sci Rep ; 5: 9009, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25760924

RESUMEN

Experimental evidence suggests a role for the immune system in the pathophysiology of depression. A specific involvement of the proinflammatory cytokine interleukin 6 (IL6) in both, patients suffering from the disease and pertinent animal models, has been proposed. However, it is not clear how IL6 impinges on neurotransmission and thus contributes to depression. Here we tested the hypothesis that IL6-induced modulation of serotonergic neurotransmission through the STAT3 signaling pathway contributes to the role of IL6 in depression. Addition of IL6 to JAR cells, endogenously expressing SERT, reduced SERT activity and downregulated SERT mRNA and protein levels. Similarly, SERT expression was reduced upon IL6 treatment in the mouse hippocampus. Conversely, hippocampal tissue of IL6-KO mice contained elevated levels of SERT and IL6-KO mice displayed a reduction in depression-like behavior and blunted response to acute antidepressant treatment. STAT3 IL6-dependently associated with the SERT promoter and inhibition of STAT3 blocked the effect of IL6 in-vitro and modulated depression-like behavior in-vivo. These observations demonstrate that IL6 directly controls SERT levels and consequently serotonin reuptake and identify STAT3-dependent regulation of SERT as conceivable neurobiological substrate for the involvement of IL6 in depression.


Asunto(s)
Depresión/metabolismo , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Animales , Conducta Animal , Línea Celular , Depresión/genética , Expresión Génica , Humanos , Interleucina-6/genética , Masculino , Ratones , Ratones Noqueados , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Transducción de Señal
10.
Neurosignals ; 20(1): 1-14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21952616

RESUMEN

The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory.


Asunto(s)
Quinasa 1 de Adhesión Focal/fisiología , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/enzimología , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/enzimología , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Sinapsis/enzimología
11.
J Neurosci ; 31(25): 9075-83, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21697358

RESUMEN

Substantial experimental evidence indicates a major role for the circadian system in mood disorders. Additionally, proinflammatory cytokines have been proposed to be involved in the pathogenesis of depression. However, the molecular elements determining the functional interplay between these two systems in depression have not been described as yet. Here we investigate whether long-term light deprivation in the constant darkness (DD) paradigm affects depression-like behavior in mice and concomitantly modulates the levels of proinflammatory cytokines. We find that after 4 weeks of DD, mice display depression-like behavior, which is paralleled by reduced hippocampal cell proliferation. This chronobiologically induced depressive state is associated with elevated levels of plasma IL-6 (interleukin-6) and IL-6 and Il1-R1 (interleukin 1 receptor, type I) protein levels in the hippocampus and also alters hippocampal protein levels of the clock genes per2 and npas2. Using pharmacological blockers of the NF-κB pathway, we provide evidence that the effects of DD on depression-like behavior, on hippocampal cell proliferation, on altered expressional levels of brain and plasma IL-6, and on the modulation of clock gene expression are mediated through NF-κB signaling. Moreover, NF-κB activity is enhanced in hippocampal tissue of DD mice. Mice with a deletion of IL-6, one of the target genes of NF-κB, are resistant to DD-induced depression-like behavior, which suggests a pivotal role for this cytokine in the constant darkness mouse model of depression. We here first describe some of the molecular elements bridging chronobiological and inflammatory processes in the constant darkness mouse model of depression.


Asunto(s)
Trastornos Cronobiológicos/metabolismo , Ritmo Circadiano , Oscuridad , Depresión/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Animales , Conducta Animal , Trastornos Cronobiológicos/complicaciones , Depresión/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
12.
Ann Med ; 43(5): 389-402, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21254899

RESUMEN

Abstract Background. The gastrin-releasing peptide receptor (GRPR) is highly expressed in the limbic system, where it importantly regulates emotional functions and in the suprachiasmatic nucleus, where it is central for the photic resetting of the circadian clock. Mice lacking GRPR presented with deficient light-induced phase shift in activity as well altered emotional learning and amygdala function. The effect of GRPR deletion on depression-like behavior and its molecular signature in the amygdala, however, has not yet been evaluated. Methods. GRPR knock-out mice (GRPR-KO) were tested in the forced-swim test and the sucrose preference test for depression-like behavior. Gene expression in the basolateral nucleus of the amygdala was evaluated by micorarray analysis subsequent to laser-capture microdissection-assisted extraction of mRNA. The expression of selected genes was confirmed by RT-PCR. Results. GRPR-KO mice were found to present with increased depression-like behavior. Microarray analysis revealed down-regulation of several glucocorticoid-responsive genes in the basolateral amygdala. Acute administration of dexamethasone reversed the behavioral phenotype and alterations in gene expression. Discussion. We propose that deletion of GRPR leads to the induction of depression-like behavior which is paralleled by dysregulation of amygdala gene expression, potentially resulting from deficient light-induced corticosterone release in GRPR-KO.


Asunto(s)
Conducta Animal/efectos de los fármacos , Depresión/fisiopatología , Dexametasona/farmacología , Receptores de Bombesina/genética , Amígdala del Cerebelo/metabolismo , Animales , Corticosterona/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Int J Mol Med ; 18(4): 775-84, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964434

RESUMEN

Although a series of proteins in the brain have been shown to be qualitatively or quantitatively dysregulated following morphine administration, a systematic proteomic study has not been carried out so far. We therefore aimed to show the effect of morphine on protein levels in the rat brain. For this purpose rats were given a morphine base in subcutaneously placed pellets and subsequently the cerebral cortex, hippocampus and striatum were taken for proteomic studies after three days. Extracted proteins were run on two-dimensional gel electrophoresis, scanned and quantified by specific software. Proteins with significantly different levels were analysed by mass spectrometry (MALDI-TOF-TOF). Twenty-six proteins were found to be differentially expressed and were unambiguously identified. Dysregulated proteins were from several protein pathways and cascades including signaling, metabolic, protein handling, antioxidant and miscellaneous classes. These findings represent an initial approach to the generation of a 'morphinome' and may form the basis for further protein chemical studies as a valuable analytical tool. Moreover, the study reveals morphine-regulated proteins in different brain areas and indicates the pathways involved following morphine administration in the rat, the main species for pharmacological studies in the field.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Hipocampo/efectos de los fármacos , Morfina/farmacología , Proteoma/análisis , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Animales , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Implantes de Medicamentos , Electroforesis en Gel Bidimensional , Hipocampo/metabolismo , Masculino , Morfina/administración & dosificación , Proteínas/análisis , Proteómica/métodos , Ratas , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Proteome Sci ; 2(1): 8, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15598346

RESUMEN

BACKGROUND: Chaperones (CH) play an important role in tumor biology but no systematic work on expressional patterns has been reported so far. The aim of the study was therefore to present an analytical method for the concomitant determination of several CH in human tumor cell lines, to generate expressional patterns in the individual cell lines and to search for tumor and non-tumor cell line specific CH expression.Human tumor cell lines of neuroblastoma, colorectal and adenocarcinoma of the ovary, osteosarcoma, rhabdomyosarcoma, malignant melanoma, lung, cervical and breast cancer, promyelocytic leukaemia were homogenised, proteins were separated on two-dimensional gel electrophoresis with in-gel digestion of proteins and MALDI-TOF/TOF analysis was carried out for the identification of CH. RESULTS: A series of CH was identified including the main CH groups as HSP90/HATPas_C, HSP70, Cpn60_TCP1, DnaJ, Thioredoxin, TPR, Pro_isomerase, HSP20, ERP29_C, KE2, Prefoldin, DUF704, BAG, GrpE and DcpS. CONCLUSIONS: The ten individual tumor cell lines showed different expression patterns, which are important for the design of CH studies in tumor cell lines. The results can serve as a reference map and form the basis of a concomitant determination of CH by a protein chemical rather than an immunochemical method, independent of antibody availability or specificity.

15.
Cancer Genomics Proteomics ; 1(5-6): 427-454, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-31394634

RESUMEN

Normal cell development requires a coordinated and organised reaction and adaptation to the constantly changing environment. Cells achieve this by a network of signaling pathways comprising proteins that serve as molecular switches. Subversion of these intracellular signaling pathways is implicated in several diseases, including cancer. To better understand the mechanisms of this process and to identify potential biomarkers and/or therapeutic targets at the protein level, we performed two-dimensional electrophoresis (2-DE) and mass spectrometry in ten different tumor cell lines. Following separation by high resolution 2-DE, a series of seventy signaling proteins were unambiguously identified that were differentially expressed in different cell lines. Signaling proteins of immense significance in cancer biology including two proteins of the 14-3-3 protein family, growth factor receptor bound protein 2, Cdc25B phosphatase, disheveled associated activator of morphogenesis-1, putative ORF1, zyxin, phosphatidylethanolamine-binding protein, Rho/Rab GDP-dissociation inhibitors, Stam binding protein, SH3 domain GRB2-like protein B2, Cullin homolog 3, Coronin-1B, calcium binding proteins and enzymes with signaling function displayed tumor cell line-specific expression. Other signaling proteins of importance, such as maspin, nucleoside diphosphate kinase-A, Ser/Thr kinases, Ser/Thr phosphatases, septins, annexins and receptor for hyaluronic acid-mediated motility, however, showed tumor cell line-associated expression. These data highlight that there might be specific and shared signaling pathways that are activated in the chain of events leading to tumor formation. Moreover, the data open up the possibility of developing new prognostic markers, as well as widening the avenue of cancer chemotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...