Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mayo Clin Proc Digit Health ; 2(1): 67-74, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501072

RESUMEN

Objective: To address thyroid cancer overdiagnosis, we aim to develop a natural language processing (NLP) algorithm to determine the appropriateness of thyroid ultrasounds (TUS). Patients and Methods: Between 2017 and 2021, we identified 18,000 TUS patients at Mayo Clinic and selected 628 for chart review to create a ground truth dataset based on consensus. We developed a rule-based NLP pipeline to identify TUS as appropriate TUS (aTUS) or inappropriate TUS (iTUS) using patients' clinical notes and additional meta information. In addition, we designed an abbreviated NLP pipeline (aNLP) solely focusing on labels from TUS order requisitions to facilitate deployment at other health care systems. Our dataset was split into a training set of 468 (75%) and a test set of 160 (25%), using the former for rule development and the latter for performance evaluation. Results: There were 449 (95.9%) patients identified as aTUS and 19 (4.06%) as iTUS in the training set; there are 155 (96.88%) patients identified as aTUS and 5 (3.12%) were iTUS in the test set. In the training set, the pipeline achieved a sensitivity of 0.99, specificity of 0.95, and positive predictive value of 1.0 for detecting aTUS. The testing cohort revealed a sensitivity of 0.96, specificity of 0.80, and positive predictive value of 0.99. Similar performance metrics were observed in the aNLP pipeline. Conclusion: The NLP models can accurately identify the appropriateness of a thyroid ultrasound from clinical documentation and order requisition information, a critical initial step toward evaluating the drivers and outcomes of TUS use and subsequent thyroid cancer overdiagnosis.

2.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009609

RESUMEN

Currently, the concept of Industry 4.0 is well known; however, it is extremely complex, as it is constantly evolving and innovating. It includes the participation of many disciplines and areas of knowledge as well as the integration of many technologies, both mature and emerging, but working in collaboration and relying on their study and implementation under the novel criteria of Cyber-Physical Systems. This study starts with an exhaustive search for updated scientific information of which a bibliometric analysis is carried out with results presented in different tables and graphs. Subsequently, based on the qualitative analysis of the references, we present two proposals for the schematic analysis of Industry 4.0 that will help academia and companies to support digital transformation studies. The results will allow us to perform a simple alternative analysis of Industry 4.0 to understand the functions and scope of the integrating technologies to achieve a better collaboration of each area of knowledge and each professional, considering the potential and limitations of each one, supporting the planning of an appropriate strategy, especially in the management of human resources, for the successful execution of the digital transformation of the industry.


Asunto(s)
Industrias , Tecnología , Bibliometría , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA