Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 13(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34437438

RESUMEN

Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs' intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.


Asunto(s)
Muerte Celular/efectos de los fármacos , Venenos de Cnidarios/metabolismo , Venenos de Cnidarios/toxicidad , Inmunotoxinas/química , Inmunotoxinas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Anémonas de Mar/química , Animales
2.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29743365

RESUMEN

Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro were investigated. mRNA for factor H (FH), a major negative regulator of the AP, was significantly increased in DENV-infected endothelial cells (EC) and macrophages, but, in contrast, production of extracellular FH protein was not. This discord was not seen for the AP activator factor B (FB), with DENV induction of both FB mRNA and protein, nor was it seen with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface-bound and intracellular FH protein was, however, induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalized cell lines (ARPE-19 and human retinal endothelial cells), FH protein was induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there was an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells, with lower FH relative to FB protein, an increased ability to promote AP-mediated lytic activity, and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease.IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with a global medical and economic impact. DENV may cause serious and life-threatening disease, with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however, overactivity of the complement alternative pathway has been suggested to play a role. In this study, we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease.


Asunto(s)
Factor B del Complemento/inmunología , Factor H de Complemento/inmunología , Vía Alternativa del Complemento , Proteínas del Sistema Complemento/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Células Cultivadas , Factor B del Complemento/metabolismo , Factor H de Complemento/metabolismo , Proteínas del Sistema Complemento/metabolismo , Dengue/metabolismo , Dengue/virología , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Endotelio Vascular/virología , Humanos , Retina/inmunología , Retina/patología , Retina/virología
3.
Biophys Rev ; 9(5): 529-544, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28853034

RESUMEN

Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.

4.
Biochim Biophys Acta Biomembr ; 1859(5): 982-992, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28173991

RESUMEN

Pore-forming toxins (PFTs) form holes in membranes causing one of the most catastrophic damages to a target cell. Target organisms have evolved a regulated response against PFTs damage including cell membrane repair. This ability of cells strongly depends on the toxin concentration and the properties of the pores. It has been hypothesized that there is an inverse correlation between the size of the pores and the time required to repair the membrane, which has been for long a non-intuitive concept and far to be completely understood. Moreover, there is a lack of information about how cells react to the injury triggered by eukaryotic PFTs. Here, we investigated some molecular events related with eukaryotic cells response against the membrane damage caused by sticholysin II (StII), a eukaryotic PFT produced by a sea anemone. We evaluated the change in the cytoplasmic potassium, identified the main MAPK pathways activated after pore-formation by StII, and compared its effect with those from two well-studied bacterial PFTs: aerolysin and listeriolysin O (LLO). Strikingly, we found that membrane recovery upon StII damage takes place in a time scale similar to LLO in spite of the fact that they form pores by far different in size. Furthermore, our data support a common role of the potassium ion, as well as MAPKs in the mechanism that cells use to cope with these toxins injury.


Asunto(s)
Venenos de Cnidarios/toxicidad , Células Eucariotas/efectos de los fármacos , Proteínas Citotóxicas Formadoras de Poros/toxicidad , Potasio/metabolismo , Anémonas de Mar/patogenicidad , Animales , Células Cultivadas , Cricetinae , Células Eucariotas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
5.
Protein Sci ; 26(3): 550-565, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28000294

RESUMEN

Crystallographic data of the dimeric and octameric forms of fragaceatoxin C (FraC) suggested the key role of a small hydrophobic protein-protein interaction surface for actinoporins oligomerization and pore formation in membranes. However, site-directed mutagenesis studies supporting this hypothesis for others actinoporins are still lacking. Here, we demonstrate that disrupting the key hydrophobic interaction between V60 and F163 (FraC numbering scheme) in the oligomerization interface of FraC, equinatoxin II (EqtII), and sticholysin II (StII) impairs the pore formation activity of these proteins. Our results allow for the extension of the importance of FraC protein-protein interactions in the stabilization of the oligomeric intermediates of StII and EqtII pointing out that all of these proteins follow a similar pathway of membrane disruption. These findings support the hybrid pore proposal as the universal model of actinoporins pore formation. Moreover, we reinforce the relevance of dimer formation, which appears to be a functional intermediate in the assembly pathway of some different pore-forming proteins.


Asunto(s)
Venenos de Cnidarios/química , Proteínas Citotóxicas Formadoras de Poros/química , Multimerización de Proteína , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
6.
Biochimie ; 116: 70-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26134716

RESUMEN

Actinoporins are pore-forming toxins (PFT) produced by sea anemones with molecular mass around 20 kDa and high affinity for sphingomyelin. The most studied atinoporins are sticholysins I and II (StI/StII) from Stichodactyla helianthus, equinatoxin II (EqtII) from Actinia equina, and fragaceatoxin C (FraC) from Actinia fragacea. Their N-terminal sequences encompassing residues 1-30 seem to be the best candidates for pore formation. This segment comprises an amphipathic α-helix preceded by a more or less hydrophobic segment, depending on the toxin, of around 10 amino acid residues. Although it is clear that the N-terminal is the most variable sequence in this protein family, the role of their hydrophobic segment in not fully understood. Here we show a comparison of StI, StII, EqtII, and FraC activities with that of their respective N-terminal synthetic peptides. The hemolytic and permeabilizing activity of the peptides reproduce qualitatively the behavior of their respective parental proteins and are particularly related to the hydrophobicity of the corresponding 1-10 segment. Furthermore, the dendrogram analysis of actinoporins' N-terminal sequence allows relating differences in alignment with differences in activity among the four toxins. We have also evaluated the penetration depth of the N-terminal segment of StI and StII by using Trp-containing peptide-analogs. Our data suggest that the N-terminus of StII is more deeply buried into the hydrophobic core of the bilayer than that of StI. We hypothesize that the highest activity of StII could be ascribed to a larger hydrophobic continuum, an uninterrupted sequence of non-charged mainly hydrophobic amino acid residues, of its N-terminus promoting a highest ability to partially insert in the membrane core. Moreover, as we show for four related peptides that a higher hydrophobicity contributes to increase the activity, we reinforce the notion that this property must be taken into account to design new potent membranotropic agents.


Asunto(s)
Péptidos/química , Secuencia de Aminoácidos , Hemólisis/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Péptidos/efectos adversos , Homología de Secuencia de Aminoácido
7.
Vaccine ; 29(25): 4256-63, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21447316

RESUMEN

Here we evaluated the suitability of the synthetic adjuvant IC31® to potentiate the protective capacity of PD5 protein (domain III of the envelope protein of dengue 2 virus fused to the carrier protein P64k). Unlike Alum, PD5 mixed with IC31® induced complete protection against virus challenge in mice and increased IFN-γ secretion after in vitro re-stimulation. The induced antibody response was highly specific to the homologous serotype and showed both IgG1 and IgG2a subtypes. IC31® is a promising adjuvant for PD5 recombinant protein based vaccination against dengue. Future work should address the suitability of PD5/IC31® formulations in non-human primate models.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos Virales/inmunología , Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Dengue/prevención & control , Oligodesoxirribonucleótidos/administración & dosificación , Oligopéptidos/administración & dosificación , Animales , Anticuerpos Antivirales/sangre , Vacunas contra el Dengue/administración & dosificación , Combinación de Medicamentos , Femenino , Inmunoglobulina G/sangre , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
8.
Arch Virol ; 154(7): 1035-45, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19504165

RESUMEN

The current study shows the usefulness of dengue-3- and dengue-4-specific phage-displayed antibody fragments as tools for viral detection and serotyping in sera from infected individuals. C6/36 HT cells were inoculated with acute-phase sera from patients, and supernatants were collected daily and analyzed by ELISA using phage-displayed antibody fragments as serotype-specific detector reagents. Serotyping of most samples was possible as early as two to three days postinoculation. Results were comparable with those obtained by indirect immunofluorescence assay but were obtained in a shorter period of time (<1 week). Phage-displayed antibody fragments were better tools for diagnosis and serotyping than their soluble counterparts. Our approach combines the advantages of viral isolation and ELISA techniques. These results could be the basis for the development of a high-throughput method for identifying dengue virus serotypes, which is crucial for the management and control of the disease.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Dengue/diagnóstico , Dengue/inmunología , Angola/epidemiología , Anticuerpos Monoclonales , Formación de Anticuerpos , Cuba/epidemiología , Dengue/sangre , Dengue/epidemiología , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Brotes de Enfermedades , Dominica/epidemiología , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Fragmentos de Péptidos/inmunología , Serotipificación , Ensayo de Placa Viral
9.
J Virol Methods ; 147(2): 235-43, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17950912

RESUMEN

Antibody fragments to the four Dengue virus serotypes were isolated from a human universal naïve library using phage display technology. Phage-displayed antibody fragments were selected on Dengue virus particles directly captured from infected Vero cells supernatant by an anti-dengue monoclonal antibody, in order to avoid laborious virus concentration/purification procedures. A total of nine phage-displayed antibody fragments were obtained. Seven of them were highly specific for three of the selector serotypes (two for Dengue 1, four for Dengue 3 and one for Dengue 4). One clone (Dengue 3-selected) cross-reacted with Dengue 1, whereas another (selected with Dengue 2) cross-reacted with the three remaining serotypes. The soluble variants of six antibody fragments recognized their target viruses when used at nanomolar and even subnanomolar concentrations. All phage-displayed antibody fragments were cross-reactive against several strains of distinct genotypes within the corresponding serotype(s). These antibody fragments are potentially useful for the future development of tools for viral diagnosis and serotype identification. The simple phage selection method on captured virus could be applied in a high throughput way to obtain larger panels of antibody fragments to Dengue virus for multiple applications.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Fragmentos de Inmunoglobulinas/inmunología , Biblioteca de Péptidos , Animales , Anticuerpos Antivirales/genética , Especificidad de Anticuerpos , Bacteriófagos , Línea Celular , Reacciones Cruzadas , Virus del Dengue/clasificación , Humanos , Fragmentos de Inmunoglobulinas/genética , Serotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...