Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biomed Opt Express ; 7(8): 2927-42, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27570688

RESUMEN

We demonstrate a micromotor balloon imaging catheter for ultrahigh speed endoscopic optical coherence tomography (OCT) which provides wide area, circumferential structural and angiographic imaging of the esophagus without contrast agents. Using a 1310 nm MEMS tunable wavelength swept VCSEL light source, the system has a 1.2 MHz A-scan rate and ~8.5 µm axial resolution in tissue. The micromotor balloon catheter enables circumferential imaging of the esophagus at 240 frames per second (fps) with a ~30 µm (FWHM) spot size. Volumetric imaging is achieved by proximal pullback of the micromotor assembly within the balloon at 1.5 mm/sec. Volumetric data consisting of 4200 circumferential images of 5,000 A-scans each over a 2.6 cm length, covering a ~13 cm(2) area is acquired in <18 seconds. A non-rigid image registration algorithm is used to suppress motion artifacts from non-uniform rotational distortion (NURD), cardiac motion or respiration. En face OCT images at various depths can be generated. OCT angiography (OCTA) is computed using intensity decorrelation between sequential pairs of circumferential scans and enables three-dimensional visualization of vasculature. Wide area volumetric OCT and OCTA imaging of the swine esophagus in vivo is demonstrated.

3.
Optica ; 3(12): 1496-1503, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28239628

RESUMEN

Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.

4.
J Lightwave Technol ; 33(16): 3461-3468, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26594089

RESUMEN

In this paper, we present a 1050 nm electrically-pumped micro-electro-mechanically-tunable vertical-cavity-surface-emitting-laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost & complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide field imaging of the in vivo human retina over a 12 mm × 12 mm field and for OCT angiography of the macula over 6 mm × 6 mm & 3 mm × 3 mm fields to show retinal vasculature and capillary structure near the fovea. These results demonstrate the feasibility of electrically pumped MEMS-VCSELs in ophthalmic instrumentation, the largest clinical application of OCT. In addition, we estimate that the 3 dB coherence length in air is 225 meters ± 51 meters, far greater than required for ophthalmic SS-OCT and suggestive of other distance ranging applications.

5.
Proc Natl Acad Sci U S A ; 111(43): 15304-9, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313045

RESUMEN

Rapid intraoperative assessment of breast excision specimens is clinically important because up to 40% of patients undergoing breast-conserving cancer surgery require reexcision for positive or close margins. We demonstrate nonlinear microscopy (NLM) for the assessment of benign and malignant breast pathologies in fresh surgical specimens. A total of 179 specimens from 50 patients was imaged with NLM using rapid extrinsic nuclear staining with acridine orange and intrinsic second harmonic contrast generation from collagen. Imaging was performed on fresh, intact specimens without the need for fixation, embedding, and sectioning required for conventional histopathology. A visualization method to aid pathological interpretation is presented that maps NLM contrast from two-photon fluorescence and second harmonic signals to features closely resembling histopathology using hematoxylin and eosin staining. Mosaicking is used to overcome trade-offs between resolution and field of view, enabling imaging of subcellular features over square-centimeter specimens. After NLM examination, specimens were processed for standard paraffin-embedded histology using a protocol that coregistered histological sections to NLM images for paired assessment. Blinded NLM reading by three pathologists achieved 95.4% sensitivity and 93.3% specificity, compared with paraffin-embedded histology, for identifying invasive cancer and ductal carcinoma in situ versus benign breast tissue. Interobserver agreement was κ = 0.88 for NLM and κ = 0.89 for histology. These results show that NLM achieves high diagnostic accuracy, can be rapidly performed on unfixed specimens, and is a promising method for intraoperative margin assessment.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Microscopía/métodos , Dinámicas no Lineales , Neoplasias de la Mama/diagnóstico , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Femenino , Humanos , Invasividad Neoplásica , Sensibilidad y Especificidad
7.
Biomed Opt Express ; 5(12): 4387-404, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25574446

RESUMEN

We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology.

8.
PLoS One ; 8(12): e81499, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349078

RESUMEN

We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ∼32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ∼6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.


Asunto(s)
Ojo/patología , Tomografía de Coherencia Óptica/métodos , Adulto , Estudios Transversales , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Biomed Opt Express ; 4(7): 1119-32, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23847737

RESUMEN

We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 µm axial resolution, 8 µm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.

10.
Ophthalmology ; 120(11): 2184-90, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23755873

RESUMEN

OBJECTIVE: To demonstrate a novel swept source optical coherence tomography (SS-OCT) imaging device using a vertical cavity surface-emitting laser (VCSEL) capable of imaging the full eye length and to introduce a method using this device for noncontact ocular biometry. To compare the measurements of intraocular distances using this SS-OCT instrument with commercially available optical and ultrasound biometers. To evaluate the intersession reproducibility of measurements of intraocular distances using SS-OCT. DESIGN: Evaluation of technology. PARTICIPANTS: Twenty eyes of 10 healthy subjects imaged at the New England Eye Center at Tufts Medical Center and Massachusetts Institute of Technology between May and September 2012. METHODS: Averaged central depth profiles were extracted from volumetric SS-OCT datasets. The intraocular distances, such as central corneal thickness (CCT), aqueous depth (AD), anterior chamber depth (ACD), crystalline lens thickness (LT), vitreous depth (VD), and axial length (AL), were measured and compared with a partial coherence interferometry device (IOLMaster; Carl Zeiss Meditec, Inc., Dublin, CA) and an immersion ultrasound (IUS) A-scan biometer (Axis-II PR; Quantel Medical, Inc., Cournon d'Auvergne Cedex, France). MAIN OUTCOME MEASURES: Reproducibility of the measurements of intraocular distances, correlation coefficients, and intraclass correlation coefficients. RESULTS: The standard deviations of the repeated measurements of intraocular distances using SS-OCT were 6 µm (CCT), 16 µm (ACD), 14 µm (AD), 13 µm (LT), 14 µm (VD), and 16 µm (AL). Strong correlations among all 3 biometric instruments were found for AL (r > 0.98). The AL measurement using SS-OCT correlates better with the IOLMaster (r=0.998) than with IUS (r=0.984). The SS-OCT and IOLMaster measured higher AL values than ultrasound (175 and 139 µm, respectively). No statistically significant difference in ACD between the optical (SS-OCT or IOLMaster) and ultrasound methods was detected. High intersession reproducibility of SS-OCT measurements of all intraocular distances was observed with intraclass correlation coefficients >0.99. CONCLUSIONS: The SS-OCT using VCSEL technology enables full eye length imaging and high-precision, noncontact ocular biometry. The measurements with the prototype SS-OCT instrument correlate well with commercial biometers. The SS-OCT biometry has the potential to provide clinically useful comprehensive biometric parameters for pre- and postoperative eye evaluation.


Asunto(s)
Biometría/métodos , Ojo/anatomía & histología , Tomografía de Coherencia Óptica/normas , Adulto , Cámara Anterior/anatomía & histología , Humor Acuoso , Longitud Axial del Ojo/anatomía & histología , Córnea/anatomía & histología , Humanos , Interferometría/normas , Cristalino/anatomía & histología , Masculino , Reproducibilidad de los Resultados , Cuerpo Vítreo/anatomía & histología , Adulto Joven
11.
Opt Lett ; 38(5): 673-5, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23455261

RESUMEN

We demonstrate ultralong-range swept-source optical coherence tomography (OCT) imaging using vertical cavity surface emitting laser technology. The ability to adjust laser parameters and high-speed acquisition enables imaging ranges from a few centimeters up to meters using the same instrument. We discuss the challenges of long-range OCT imaging. In vivo human-eye imaging and optical component characterization are presented. The precision and accuracy of OCT-based measurements are assessed and are important for ocular biometry and reproducible intraocular distance measurement before cataract surgery. Additionally, meter-range measurement of fiber length and multicentimeter-range imaging are reported. 3D visualization supports a class of industrial imaging applications of OCT.


Asunto(s)
Rayos Láser , Luz , Tomografía de Coherencia Óptica/instrumentación , Ojo/citología , Humanos , Fantasmas de Imagen
12.
Opt Lett ; 38(3): 338-40, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23381430

RESUMEN

Despite the challenges in achieving high phase stability, Doppler swept-source/Fourier-domain optical coherence tomography (OCT) has advantages of less fringe washout and faster imaging speeds compared to spectral/Fourier-domain detection. This Letter demonstrates swept-source OCT with a vertical cavity surface-emitting laser light source at 400 kHz sweep rate for phase-sensitive Doppler imaging, measuring pulsatile total retinal blood flow with high sensitivity and phase stability. A robust, simple, and computationally efficient phase stabilization approach for phase-sensitive swept-source imaging is also presented.


Asunto(s)
Retina/patología , Tomografía de Coherencia Óptica/métodos , Algoritmos , Diseño de Equipo , Análisis de Fourier , Humanos , Rayos Láser , Luz , Flujo Sanguíneo Regional , Vasos Retinianos/patología , Sensibilidad y Especificidad , Tomografía de Coherencia Óptica/instrumentación
13.
Biomed Opt Express ; 5(1): 293-311, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24466495

RESUMEN

We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm(2) and wide field 10 x 10 mm(2) volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.

14.
Biomed Opt Express ; 3(11): 2733-51, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23162712

RESUMEN

We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50-580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into one instrument. The operating modes of the device include: ultrahigh speed, high resolution retinal imaging (up to 580 kHz); high speed, long depth range anterior segment imaging (100 kHz) and ultralong range full eye imaging (50 kHz). High speed imaging enables wide-field retinal scanning, while increased light penetration at 1060 nm enables visualization of choroidal vasculature. Comprehensive volumetric data sets of the anterior segment from the cornea to posterior crystalline lens surface are also shown. The adjustable VCSEL sweep range and rate make it possible to achieve an extremely long imaging depth range of ~50 mm, and to demonstrate the first in vivo 3D OCT imaging spanning the entire eye for non-contact measurement of intraocular distances including axial eye length. Swept source OCT with VCSEL technology may be attractive for next generation integrated ophthalmic OCT instruments.

15.
Biomed Opt Express ; 3(3): 612-29, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22435106

RESUMEN

TO DATE, TWO MAIN CATEGORIES OF OCT TECHNIQUES HAVE BEEN DESCRIBED FOR IMAGING HEMODYNAMICS: Doppler OCT and OCT angiography. Doppler OCT can measure axial velocity profiles and flow in arteries and veins, while OCT angiography can determine vascular morphology, tone, and presence or absence of red blood cell (RBC) perfusion. However, neither method can quantify RBC velocity in capillaries, where RBC flow is typically transverse to the probe beam and single-file. Here, we describe new methods that potentially address these limitations. Firstly, we describe a complex-valued OCT signal in terms of a static scattering component, dynamic scattering component, and noise. Secondly, we propose that the time scale of random fluctuations in the dynamic scattering component are related to red blood cell velocity. Analysis was performed along the slow axis of repeated B-scans to parallelize measurements. We correlate our purported velocity measurements against two-photon microscopy measurements of RBC velocity, and investigate changes during hypercapnia. Finally, we image the ischemic stroke penumbra during distal middle cerebral artery occlusion (dMCAO), where OCT velocimetry methods provide additional insight that is not afforded by either Doppler OCT or OCT angiography.

16.
Opt Express ; 20(3): 2220-39, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22330462

RESUMEN

In vivo optical microscopic imaging techniques have recently emerged as important tools for the study of neurobiological development and pathophysiology. In particular, two-photon microscopy has proved to be a robust and highly flexible method for in vivo imaging in highly scattering tissue. However, two-photon imaging typically requires extrinsic dyes or contrast agents, and imaging depths are limited to a few hundred microns. Here we demonstrate Optical Coherence Microscopy (OCM) for in vivo imaging of neuronal cell bodies and cortical myelination up to depths of ~1.3 mm in the rat neocortex. Imaging does not require the administration of exogenous dyes or contrast agents, and is achieved through intrinsic scattering contrast and image processing alone. Furthermore, using OCM we demonstrate in vivo, quantitative measurements of optical properties (index of refraction and attenuation coefficient) in the cortex, and correlate these properties with laminar cellular architecture determined from the images. Lastly, we show that OCM enables direct visualization of cellular changes during cell depolarization and may therefore provide novel optical markers of cell viability.


Asunto(s)
Aumento de la Imagen/instrumentación , Microscopía/instrumentación , Neocórtex/citología , Neuronas/citología , Tomografía de Coherencia Óptica/instrumentación , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Ratas , Ratas Sprague-Dawley
17.
Biomed Opt Express ; 2(6): 1539-52, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21698017

RESUMEN

Doppler OCT provides depth-resolved information on flow in biological tissues. In this article, we demonstrate ultrahigh speed swept source/Fourier domain OCT for visualization and quantitative assessment of retinal blood flow. Using swept laser technology, the system operated in the 1050-nm wavelength range at a high axial scan rate of 200 kHz. The rapid imaging speed not only enables volumetric imaging with high axial scan densities, but also enables measurement of high flow velocities in the central retinal vessels. Deep penetration in the optic nerve and lamina cribrosa was achieved by imaging at 1-µm wavelengths. By analyzing en-face images extracted from 3D Doppler data sets, absolute flow in single vessels as well as total retinal blood flow was measured using a simple and robust protocol that does not require measurement of Doppler angles. The results from measurements in healthy eyes suggest that ultrahigh speed swept source/Fourier domain OCT could be a promising technique for volumetric imaging of retinal vasculature and quantitation of retinal blood flow in a wide range of retinal diseases.

18.
J Cereb Blood Flow Metab ; 31(6): 1339-45, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21364599

RESUMEN

Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular , Tomografía de Coherencia Óptica/métodos , Angiografía/métodos , Animales , Flujometría por Láser-Doppler/métodos , Ratas , Ratas Sprague-Dawley
19.
Opt Express ; 18(19): 20029-48, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20940894

RESUMEN

We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 - 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100 kHz axial scan rate with 5.3 um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0 um axial resolution at 100 kHz axial scan rate. A 200 kHz axial scan rate with 5.3 um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400 kHz axial scan rate, almost 2X faster than previous 1050 nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12x12 mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5 mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050 m wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050 nm wavelengths will play an important role in future ophthalmic instrumentation.


Asunto(s)
Segmento Anterior del Ojo/anatomía & histología , Microscopía Confocal/instrumentación , Retina/anatomía & histología , Retinoscopios , Tomografía de Coherencia Óptica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Fourier , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Opt Lett ; 35(1): 43-5, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20664667

RESUMEN

We describe methods and algorithms for rapid volumetric imaging of cortical vasculature with optical coherence tomography (OCT). By optimizing system design, scanning protocols, and algorithms for visualization of capillary flow, comprehensive imaging of the surface pial vasculature and capillary bed is performed in approximately 12 s. By imaging during hypercapnia and comparing with simultaneous CCD imaging, the sources of contrast of OCT angiography are investigated.


Asunto(s)
Angiografía/métodos , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Animales , Imagenología Tridimensional , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...