Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 186: 114403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729705

RESUMEN

This study aimed to evaluate the functional, technological, and sensory aspects of mangaba (Hancornia speciosa Gomes) fruit pulp fermented with the probiotic Lacticaseibacillus casei 01 (LC1) during refrigerated storage (7 °C, 28 days). The effects of the fermented mangaba pulp on the modulation of the intestinal microbiota of healthy vegan adults were also assessed. Mangaba pulp allowed high viability of LC1 during storage and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermented mangaba pulp showed lower pH and total soluble solids, and higher titratable acidity, and concentrations of lactic, acetic, citric, and propionic acids during storage compared to non-fermented pulp. Also, it presented a higher concentration of bioaccessible phenolics and volatiles, and improved sensory properties (yellow color, brightness, fresh appearance, and typical aroma and flavor). Fermented mangaba pulp added to in vitro cultured colonic microbiota of vegan adults decreased the pH values and concentrations of maltose, glucose, and citric acid while increasing rhamnose and phenolic contents. Fermented mangaba pulp promoted increases in the abundance of Dorea, Romboutsia, Faecalibacterium, Lachnospira, and Lachnospiraceae ND3007 genera and positively impacted the microbial diversity. Findings indicate that mangaba pulp fermented with LC1 has improved chemical composition and functionality, inducing changes in the colonic microbiota of vegan adults associated with potential benefits for human health.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Lacticaseibacillus casei , Humanos , Microbioma Gastrointestinal/fisiología , Lacticaseibacillus casei/metabolismo , Adulto , Gusto , Probióticos , Masculino , Concentración de Iones de Hidrógeno , Frutas/microbiología , Frutas/química , Colon/microbiología , Colon/metabolismo , Adulto Joven , Femenino
2.
Food Res Int ; 175: 113710, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128981

RESUMEN

Aeromonas sp. is a Gram-negative, non-spore-forming, rod-shaped, oxidase-positive, facultative anaerobic bacterium and a natural contaminant found in aquatic environments. Some species can invade, colonize, and damage host cells due to the presence of virulence factors, such as flagella, elastase, hemolysins, aerolysins, adhesins, enterotoxins, phospholipases and lipases, that lead to pathogenic activities. Consequently, can cause many health disorders that range from gastrointestinal problems, enteric infections, and ulcers to hemorrhagic septicemia. Aeromonas has been isolated and identified from a variety of sources, including drinking water and ready-to-eat foods (fish, meat, fresh vegetables, dairy products, and others). Some species of this opportunistic pathogen are resistant to several commercial antibiotics, including some used as a last resort for treatment, which represents a major challenge in the clinical segment. Antimicrobial resistance can be attributed to the indiscriminate use of antibiotics by society in aquaculture and horticulture. In addition, antibiotic resistance is attributed to plasmid transfer between microorganisms and horizontal gene transfer. This review aimed to (i) verify the occurrence of Aeromonas species in water and food intended for human consumption; (ii) identify the methods used to detect Aeromonas species; (iii) report on the virulence genes carried by different species; and (iv) report on the antimicrobial resistance of this genus in the last 5 years of research. Additionally, we present the existence of Aeromonas spp. resistant to antimicrobials in food and drinking water represents a potential threat to public health.


Asunto(s)
Aeromonas , Antiinfecciosos , Agua Potable , Animales , Humanos , Virulencia/genética , Antibacterianos/farmacología , Composición de Base , Farmacorresistencia Bacteriana , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN
3.
Food Chem ; 435: 137640, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804728

RESUMEN

Physicochemical parameters, microbial diversity using sequencing and amplicon, and metabolite concentrations from Ginger Bug and Ginger Beer were characterized. Furthermore, the sensory aspects of the beverage were determined. The longer ginger bug activation time (96 h) resulted in higher production of organic acids and alcohols, increased phenolic and volatile compounds concentration, greater microbial diversity, and increased lactic acid bacteria and yeasts. In the same way, the longer fermentation time (14 days) of ginger beer resulted in higher ethanol content, volatile compounds, and phenolic compounds, in addition to better sensory characteristics. Our results showed that ginger beer produced with ginger bug and fermented for 14 days showed better volatile and phenolic compound profiles, physicochemical parameters, microbial diversity, and sensory characteristics.


Asunto(s)
Microbiota , Zingiber officinale , Cerveza , Fermentación , Zingiber officinale/química , Fenoles/análisis
4.
Food Sci Nutr ; 11(11): 7283-7295, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970408

RESUMEN

Eriocitrin (eriodictyol 7-O-ß-rutinoside), a citrus flavonoid from lemon juice and peel, reduces hyperglycemia and improves diabetes-related biomarkers in prediabetes patients. Eriocitrin is first metabolized by gut microbiota, producing energy for gut cells and short chain fatty acids that play a relevant role in glycemic control. The aim of this study was to assess the effect of Eriomin®, a nutraceutical composed of 70% eriocitrin, 5% hesperidin, and 4% naringin, on the microbiota of prediabetic patients. Patients were randomly divided into two groups and received unlabeled capsules of Eriomin® (200 mg/day) or placebo during 12 weeks. After treatment with the nutraceutical, it was a 6% decrease of hyperglycemia and 22% increase of GLP-1 blood levels of (p < .05). The profile of intestinal microorganisms, obtained by 16S rRNA sequencing of the patients' feces extract, showed changes in microbiota composition, such as lower growth of Firmicutes and less abundance of the Lachnospiraceae family. The family Ruminococcaceae increased and Blautia genus reduced with Eriomin® supplementation. In additional, Blautia was positively correlated with hyperglycemia reduction. In conclusion, the nutraceutical Eriomin® moderately reduced the growth of microorganisms associated with intestinal dysbiosis and increased the abundance of beneficial bacteria. Changes promoted mainly by the flavonoid eriocitrin in the microbiota were related to a lower glycemic level and increased production of GLP-1 in patients with prediabetes.

5.
Food Res Int ; 173(Pt 1): 113233, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803548

RESUMEN

Mini-roses (Rosa chinensis Jacq.) is largely used in salty dishes and desserts. This study evaluated instrumental color, sugars, organic acids, phenolics, volatiles, and the indigenous microbiota (fungi and bacteria) in edible mini-roses farmed in discarded fruits biocompost and animal manure systems. A descriptive sensory analysis of flowers was also performed. Mini-roses farmed in biocompost had higher luminosity and intensity of instrumental red color, a higher concentration of phenolic compounds, including anthocyanins related to red color, and fructose than mini-roses farmed in animal manure (p < 0.05). Furthermore, mini-roses farmed in biocompost had higher concentrations of various volatiles (p < 0.05), including hexyl acetate and cis-3 -hexenyl butyrate related to the fruity aroma. Bacterial groups related to plant growth-promoting such as Stenotrophomonas and endophilic fungal groups such as Eurotiales sp, Pleosporales sp were found in higher abundance (p < 0.05) in mini-roses farmed in biocompost. Mini-rose farmed in biocompost also received higher score (p < 0.05) for fruity aroma and red color than mini-rose mini-roses farmed in animal manure. Results indicate that farming mini-roses using biocompost from discarded fruits impacts the synthesis of phenolics and volatiles, resulting in a more intense fruity aroma and red color. Findings also suggest that the microbiota of mini-roses farmed in biocompost or animal manure do not represent a major risk for the safety of these products.


Asunto(s)
Antocianinas , Rosa , Animales , Odorantes , Estiércol , Agricultura
6.
Food Res Int ; 162(Pt A): 111973, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461288

RESUMEN

Edible flowers have been widely consumed fresh in drinks, salads, desserts and salty dishes. This study evaluated the color parameters, chemical composition (phenolics, sugars, organic acids), volatiles compounds and microbiota (bacterial and fungal communities) in edible purple flowers (Torenia fournieri F. Lind.) cultivated in biocompost and traditional organic systems. Torenia flowers cultivated in biocompost had high (p < 0.05) contents of anthocyanins (cyanidin 3,5-diglucoside, delphinidin 3-glucoside), flavonols (quercitin 3-glycoside, myricetin and rutin), sugars (rhamnose and glucose), organic acids (citric and succinic), aldehydes (hexanal, cis-2-hexenal and trans-2-hexenal), and alcohols (trans-2-hexenol and 3-ethyl-4-methylpentan-1-ol). Flowers cultivated in biocompost showed higher (p < 0.05) abundance Cyanobacteria and Basidiomycota bacterial and fungal phyla, respectively, than flowers cultivated in traditional system. The high abundance of Oxyphotobacteria and Dothideomycetes classes, Acetobacterales and Cladosporiales orders, Oxyphotobacteriaceae and Cladosporiaceae families, and Raoultella and Cladosporium genera characterized torenia flowers cultivated in biocompost. The cultivation system influenced the torenia flowers microbiota and composition, primarily due to environmental response and enhanced uptake of nutrients. Our findings indicate that cultivation of torenia using the agroindustrial based-biocompost improves bioactive and volatiles contents in more purple and fruity flavored flowers, rendering flowers more attractive for consumption.


Asunto(s)
Microbiota , Micobioma , Humanos , Antocianinas , Flores , Azúcares
7.
Nat Commun ; 13(1): 629, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110564

RESUMEN

The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of ß-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.


Asunto(s)
Microbioma Gastrointestinal , Plantas/metabolismo , Polisacáridos/metabolismo , Roedores/microbiología , Animales , Bacterias/clasificación , Bacterias/enzimología , Bacterias/metabolismo , Bacteroidetes/enzimología , Bacteroidetes/genética , Bacteroidetes/metabolismo , Metabolismo de los Hidratos de Carbono , Cristalografía por Rayos X , Fibras de la Dieta/metabolismo , Glicósido Hidrolasas/metabolismo , Lignina , Filogenia , Simbiosis , Xilanos/metabolismo
8.
Probiotics Antimicrob Proteins ; 14(2): 349-359, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066820

RESUMEN

High-fat diet (HFD) consumption is a risk factor for dyslipidemias, insulin resistance, and arterial hypertension linked with gut dysbiosis. Probiotic administration has been suggested as a safe therapeutic strategy for gut microbiota modulation and treatment and/or prevention of cardiometabolic disorders. Here, we assessed the effects of a potentially probiotic formulation containing strains of the Limosilactobacillus (L.) fermentum 139, 263, and 296 on the cardiometabolic disorders and gut microbiota derangements provoked by the HFD consumption. Male Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6) groups for 4 weeks. L. fermentum formulation (109 colony-forming unit (CFU)/ml of each strain) was daily administered by oral gavage. After 4-week follow-up, biochemical measurements, blood pressure (BP), heart rate (HR), sympathetic tone, and gut microbiota composition were evaluated. HFD consumption for 4 weeks increased lipid profile, insulin resistance, sympathetic tone, and blood pressure and impaired gut microbiota composition in male rats. Administration of L. fermentum formulation improved the gut microbiota composition, lipid profile, insulin resistance, autonomic dysfunction, and BP in rats fed with a HFD. Administration of a potentially fruit-derived probiotic formulation of L. fermentum strains improved gut microbiota composition and alleviated hyperlipidemia, insulin resistance, and sympathetic hyperactivity and increased BP in rats fed a HFD. Our findings may encourage the development of randomized controlled trials to assess the effects of L. fermentum treatment in subjects with cardiometabolic disorders.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Resistencia a la Insulina , Limosilactobacillus fermentum , Probióticos , Animales , Dieta Alta en Grasa/efectos adversos , Frutas , Microbioma Gastrointestinal/fisiología , Humanos , Lípidos , Masculino , Ratas , Ratas Wistar
9.
Chemosphere ; 286(Pt 2): 131752, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426136

RESUMEN

Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.


Asunto(s)
Microbiota , Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Contaminación por Petróleo/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis
10.
Front Microbiol ; 12: 623951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135869

RESUMEN

This study aimed to investigate the impact of the food matrix (orange juice and yogurt) on the effects of the spore-forming probiotic microorganism Bacillus coagulans GBI-30 6086 in health parameters and gastrointestinal tract (gut) bacterial diversity in Wistar male rats. Rats (n = 48) were randomly distributed into six groups. The groups were the Control (which received sterile distilled water), Juice (which received orange juice), Yogurt (which received yogurt), Probiotic Bacillus (which received B. coagulans GBI-30 6086 in distilled water), Probiotic Juice (which received orange juice with B. coagulans GBI-30 6086), and Probiotic Yogurt (which received yogurt with B. coagulans GBI-30 6086). Each animal belonging to the different groups was treated for 21 days. The daily administration of probiotic juice or probiotic yogurt did not affect the rats' food or body weight. Rats fed with Probiotic Yogurt showed lower glucose and triglycerides levels (p < 0.05) in comparison to the control group (p < 0.05), while no changes in these parameters were observed in the rats fed with Probiotic Juice. Rats fed with Probiotic Yogurt showed a higher gut bacterial diversity than the control group (p < 0.05), and higher abundance (p < 0.05) of Vibrionales, Enterobacteriales, Burkholderiales, Erysipelotrichales, and Bifidobacteriales compared to all other groups. No changes were observed in the expression levels of antioxidant enzymes or heat shock protein 70 of rats fed with probiotic yogurt or probiotic juice. Results reveal that the consumption of yogurt containing B. coagulans GBI-30 6086 decreases triglycerides and glucose levels and positively impacts the gut bacterial ecology in healthy rats. These animal model findings indicate that the matrix also impacts the functionality of foods carrying spore-forming probiotics. Besides, this research indicates that yogurt is also a suitable food carrier of Bacillus coagulans GBI-30 6086.

11.
Food Funct ; 12(12): 5287-5300, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34009228

RESUMEN

This study aimed to evaluate the effects of ingestion of live (9 log CFU mL-1) and ultrasound-inactivated (paraprobiotic, 20 kHz, 40 min) Lacticaseibacillus casei 01 cells for 28 days on healthy parameters (biochemical and cardiovascular) and intestinal microbiota (amplicon sequencing of 16S ribosomal RNA) of rats fed a high-fat diet. Twenty-four male Wistar rats were divided into four groups of six animals: CTL (standard diet), HFD (high-fat diet), HFD-LC (high-fat diet and live L. casei), and HFD-ILC (high-fat diet and inactivated L. casei). The administration of live and ultrasound-inactivated L. casei prevented the increase (p < 0.05) in cholesterol levels (total and LDL) and controlled the insulin resistance in rats fed a high-fat diet. Furthermore, it promoted a modulation of the intestinal microbial composition by increasing (p < 0.05) beneficial bacteria (Lachnospiraceae and Ruminoccocaceae) and decreasing (p < 0.05) harmful bacteria (Clostridiaceae, Enterobacteriaceae, and Helicobacteriacea), attenuating the effects promoted by the HFD ingestion. Only live cells could increase (p < 0.05) the HDL-cholesterol, while only inactivated cells caused attenuation (p < 0.05) of the blood pressure. Results show beneficial effects of live and inactivated L. casei 01 and indicate that ultrasound inactivation produces a paraprobiotic with similar or improved health properties compared to live cells.


Asunto(s)
Sistema Cardiovascular , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillaceae/fisiología , Lactobacillaceae/efectos de la radiación , Ondas Ultrasónicas , Animales , Bacterias/clasificación , Bacterias/genética , Peso Corporal , Ingestión de Alimentos , Microbioma Gastrointestinal/genética , Resistencia a la Insulina , Intestinos/microbiología , Masculino , Probióticos/farmacología , ARN Ribosómico 16S , Ratas , Ratas Wistar
12.
Int J Food Sci Nutr ; 72(8): 1057-1070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33820498

RESUMEN

This study investigated the effects of feeding paraprobiotics obtained by six processes [heat, ultrasound, high pH, low pH, irradiation and supercritical carbon dioxide (CO2)] on biochemical parameters and intestinal microbiota of Wistar male rats. Daily administration of paraprobiotics did not affect (p ≥ 0.05) the food intake, body weight, glucose and triglycerides levels, expression of antioxidant enzymes or thermal shock proteins in comparison to the control. Bifidobacterium lactis inactivated by irradiation and supercritical CO2 decreased the total cholesterol levels in serum (p < 0.05). Bifidobacterium lactis inactivated by supercritical CO2 increased the albumin and creatinine levels, while decreased the HDL-cholesterol levels (p < 0.05). Clostridiales (45.6-56%), Bacteroidales (31.9-44.2%) and Lactobacillales (3.9-7.8%) corresponded to the major orders in paraprobiotic groups. The properties of paraprobiotics are dependent on the method of inactivation, the intensity of the method employed and on the strain used.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Peso Corporal , Dióxido de Carbono , Colesterol/sangre , Calor , Concentración de Iones de Hidrógeno , Masculino , Radiación , Ratas , Ratas Wistar
13.
Br J Nutr ; 126(12): 1794-1808, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33593462

RESUMEN

Strenuous physical activity, sleep deprivation and psychological stress are common features of military field training. The present study aimed to evaluate the effects of supplementation with a synbiotic ice cream on salivary IgA, gastrointestinal symptoms, well-being indicators and gut microbiota in young military participants undergoing field training. Sixty-five military completed the study: one group was supplemented for 30 d with synbiotic ice cream containing: 2·1 × 108 CFU/g for Lactobacillus acidophilus LA-5 and 2·7 × 109 CFU/g for Bifidobacterium animalis BB-12 and 2·3 g of inulin in the 60 g of ice cream at manufacture, and the other with a placebo ice cream. Volunteers were evaluated at pre-supplementation (baseline), post-supplementation and after a 5-d military training. Bifidobacterium and Lactobacillus genera were measured in stool samples and both showed a higher differential abundance post-supplementation and training. Salivary IgA and gastrointestinal symptoms decreased at post-training in both groups (P < 0·05; main effect of time); however, supplementation with synbiotic did not mitigate this effect. Tenseness and sleepiness were decreased in the synbiotic-treated group, but not in the placebo group at post-military training (P = 0·01 and 0·009, respectively; group × time effect). The other well-being indicators were not affected by the synbiotic supplementation. In conclusion, 30 d of synbiotic ice cream supplementation containing inulin, L. acidophilus LA-5 and B. animalis BB-12 favourably modulated gut microbiota and improved tenseness and sleepiness in healthy young military undergoing a 5-d field training. These improvements may be relevant to this population as they may influence the decision-making process in an environment of high physical and psychological stress.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Helados , Personal Militar , Probióticos , Simbióticos , Método Doble Ciego , Humanos , Helados/microbiología
14.
Int J Food Sci Nutr ; 72(6): 781-793, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33487082

RESUMEN

This study investigated the effects of consumption of wheat-durum pasta added of Bifidobacterium animalis inactivated by gamma-irradiation (paraprobiotic) on health and gut microbiota of rats. Twenty-one male rats were divided into three groups as follow: control (Control) receiving standard diet; pasta control (PC) receiving diet containing pasta, and paraprobiotic pasta Bifidobacterium-irradiated (PPBI), receiving paraprobiotic pasta. The serum levels of glucose and total cholesterol were reduced (p < 0.05) in PPBI when compared to the Control (p < 0.05). PPBI showed high abundance (p ˂ 0.05) of Firmicutes and Actinobacteria and a lower abundance of Bacteriodes compared to Control and PC. Besides, the PPBI showed high abundance (p ˂ 0.05) of Clostridiales, Lactobacillales; Bifidobacteriales, Bacillales, and Coriobacteriales in comparison to Control. Specific genera such as Bifibacterium, Lactobacillus, Ruminococcus, Allobaculum, and Blautia were more related to PPBI. Findings reveal wheat-durum pasta as a potential vehicle for delivering paraprobiotics B. animalis.


Asunto(s)
Bifidobacterium animalis , Dieta , Microbioma Gastrointestinal , Probióticos , Animales , Bifidobacterium , Glucemia , Colesterol/sangre , Clostridiales , Ratas , Triticum
15.
Chemosphere ; 267: 129190, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33316621

RESUMEN

The combination of different microorganisms and their metabolisms makes the use of microbial consortia in bioremediation processes a useful approach. In this sense, this study aimed at structuring and selecting a marine microbial consortium for Remazol Brilliant Blue R (RBBR) detoxification and decolorization. Experimental design was applied to improve the culture conditions, and metatranscriptomic analysis to understand the enzymatic pathways. A promising consortium composed of Mucor racemosus CBMAI 847, Marasmiellus sp. CBMAI 1062, Bacillus subtilis CBMAI 707, and Dietzia maris CBMAI 705 was selected. This consortium showed 52% of detoxification and 86% of decolorization in the validation assays after seven days of incubation in the presence of 500 ppm of RBBR. Reduction in RBBR color and toxicity were achieved by biosorption and microbial metabolisms. Metatranscriptomic data indicate that the consortium was able to decolorize and breakdown the RBBR molecule using a coordinated action of oxidases, oxygenases, and hydrolases. Epoxide hydrolases and glyoxalases expression could be associated with the decrease in toxicity. The efficiency of this marine microbial consortium suggests their use in bioremediation processes of textile effluents.


Asunto(s)
Colorantes , Consorcios Microbianos , Actinobacteria , Biodegradación Ambiental , Mucor , Textiles
17.
Nat Chem Biol ; 16(8): 920-929, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451508

RESUMEN

The fundamental and assorted roles of ß-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on ß-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/ß)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical ß-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of ß-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of ß-1,3-glucans, which can be exploited for biotechnological applications.


Asunto(s)
Glucano 1,3-beta-Glucosidasa/química , Glicósido Hidrolasas/química , beta-Glucanos/química , Secuencia de Aminoácidos/genética , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucanos/química , Glicósidos/química , Modelos Moleculares , Especificidad por Sustrato/fisiología
18.
Br J Nutr ; : 1-12, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32138793

RESUMEN

The aim of the present work was to compare the capacity to modulate the intestinal microbiota and the production of metabolites after 14 d administration of a commercial dietary supplement and a manufactured ice cream, both containing the same quantity of inulin and the same viable counts of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12, using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) model. Samples of the colonic contents were evaluated microbiologically by real-time quantitative PCR (qRT-PCR) and next-generation sequencing and chemically by the production of SCFA (acetate, propionate and butyrate) and ammonium ions ($\text{NH}_4^ + $). Statistical analyses were carried out for all the variables using the two-way ANOVA followed by the Tukey multiple comparisons test (P < 0·05) for metabolite production, qRT-PCR and the bioinformatics analysis for microbiota diversity. Dietary supplement and ice cream were able to deliver the probiotic L. acidophilus and B. animalis to the simulated colon and modulate the microbiota, increasing beneficial micro-organisms such as Bifidobacterium spp., Bacteroides spp. and Faecalibacterium spp. for dietary supplement administration, and Lactobacillus spp. for ice cream supplementation. However, the ice cream matrix was probably more favourable for the maintenance of the metabolic activity of the probiotics in the SHIME® model, due to the larger amounts of acetate, propionate, butyrate and ammonium ions obtained after 14 d of supplementation. In conclusion, both ways of probiotic supplementation could be efficient, each with its own particularities.

19.
Food Microbiol ; 89: 103453, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32138999

RESUMEN

In this work, the amplicon sequencing of the 16 S rRNA gene was employed to investigate the bacterial diversity in ingredients, processing environment, and ripened cheeses collected from three farms producing Serra da Canastra artisanal cheese. The data obtained indicated a remarkable variability in the bacteria consortia of the milk, whey, and environmental samples collected in farms 1, 2, and 3, despite their location in the same city. On the other hand, the starter culture and final product (ripened cheese) presented more constant and similar microbiota no matter the farm. The findings suggest that Streptococcus and Lactococcus have competitive advantages throughout Serra da Canastra cheese-making/ripening, which is crucial for their high relative abundance in the final products. An exploratory assessment based on sequencing data available in the literature showed that the Serra da Canastra cheeses sequences clustered with specific cheese varieties that are also made from raw milk but ripened for very different periods. The findings of this study highlight that despite the variability of milk and whey microbiota among the three farms, the starter culture ("pingo") has strong relevance in shaping the microbiota of the final product.


Asunto(s)
Bacterias/clasificación , Queso/microbiología , Microbiota , Leche/microbiología , Animales , Granjas , Microbiología de Alimentos , ARN Ribosómico 16S/genética
20.
Ecotoxicol Environ Saf ; 189: 109974, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761556

RESUMEN

Aromatic hydrocarbons (AH) are widely distributed in nature, and many of them have been reported as relevant environmental pollutants and valuable carbon sources for different microorganisms. In this work, high-throughput sequencing of a metagenomic fosmid library was carried out to evaluate the functional and taxonomic diversity of genes involved in aromatic compounds degradation in oil-impacted mangrove sediments. In addition, activity-based approach and gas chromatography were used to assess the degradation potential of fosmid clones. Results indicated that AH degradation genes, such as monooxygenases and dioxygenases, were grouped into the following categories: anaerobic degradation of aromatic compounds (20.34%), metabolism of central aromatic intermediates (35.40%) and peripheral pathways for catabolism of aromatic compounds (22.56%). Taxonomic affiliation of genes related to aromatic compounds metabolism revealed the prevalence of the classes Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria. Aromatic hydrocarbons (phenol, naphthalene, phenanthrene, pyrene and benzopyrene) were used as the only carbon source to screen clones with degradation potential. Of the 2500 clones tested, 48 showed some respiratory activity in at least one of the five carbon sources used. The hydrocarbon degradation ability of the top ten fosmid clones was confirmed by GC-MS. Further, annotation of assembled metagenomic fragments revealed ORFs corresponding to proteins and functional domains directly or indirectly involved in the aromatic compound metabolism, such as catechol 2,3-dioxygenase and ferredoxin oxidoreductase. Finally, these data suggest that the indigenous mangrove sediment microbiota developed essential mechanisms towards ecosystem remediation of petroleum hydrocarbon impact.


Asunto(s)
Sedimentos Geológicos/microbiología , Hidrocarburos Aromáticos/metabolismo , Metagenoma , Contaminación por Petróleo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Dioxigenasas/genética , Biblioteca de Genes , Metagenómica , Microbiota , Oxigenasas de Función Mixta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...