Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AIDS ; 38(4): 439-446, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37382903

RESUMEN

OBJECTIVES: In 2018, the Botswana Tsepamo Study reported a nine-fold increased risk of neural tube defects in infants whose mothers were treated with dolutegravir (DTG) from the time of conception. As maternal folate supplementation and status is a well known modifier of neural tube defect (NTD) risk, we sought to evaluate birth outcomes in mice fed normal and low folic acid diets treated with DTG during pregnancy. DESIGN: DTG was evaluated for developmental toxicity using pregnant mice fed normal or low folic acid diet. METHODS: CD-1 mice were provided diet with normal (3 mg/kg) or low (0.3 mg/kg) folic acid. They were treated with water, a human therapeutic-equivalent dose, or supratherapeutic dose of DTG from mouse embryonic day E6.5 to E12.5. Pregnant dams were sacrificed at term (E18.5) and fetuses were inspected for gross, internal, and skeletal defects. RESULTS: Fetuses with exencephaly, an NTD, were present in both therapeutic human equivalent and supratherapeutic exposures in dams fed low folic acid diet. Cleft palates were also found under both folate conditions. CONCLUSIONS: Recommended dietary folic acid levels during mouse pregnancy ameliorate developmental defects that arise from DTG exposure. Since low folate status in mice exposed to DTG increases the risk for NTDs, it is possible that DTG exposures in people living with HIV with low folate status during pregnancy may explain, at least in part, the elevated NTD risk signal observed in Botswana. Based on these results, future studies should consider folate status as a modifier for DTG-associated NTD risk.


Asunto(s)
Infecciones por VIH , Defectos del Tubo Neural , Oxazinas , Piperazinas , Piridonas , Humanos , Embarazo , Femenino , Animales , Ratones , Ácido Fólico/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos/efectos adversos
2.
FASEB J ; 38(1): e23346, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095297

RESUMEN

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Asunto(s)
Deficiencia de Ácido Fólico , Defectos del Tubo Neural , Animales , Ratones , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridad Celular/genética , Fibroblastos/metabolismo , Vía de Señalización Wnt , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Deficiencia de Ácido Fólico/metabolismo
3.
Reprod Dev Med ; 7(2): 102-107, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37313449

RESUMEN

Folates are B vitamins that are essential for several molecular, cellular, and biological processes, including nucleotide synthesis, methylation, and methionine cycling. The physiological impacts of these processes on health also extend to cell proliferation, folate deficiency anemia, and reduction of the risk of birth defects during pregnancy. The primary objective of this study was to characterize the binding affinities of different folate forms, folic acid (FA), 5-methyltetrahydrofolate (5MTHF), and folinic acid, to the folate receptors α and ß, and to the bovine milk folate binding protein. These three dietary forms of folate are found in enriched grains (FA), various fruits and leafy vegetables (folinic acid), and red blood cells (5MTHF). Methods: The half maximal inhibitory concentration values and binding curves of each of these folates for each receptor were determined. Results: Our results indicated that FA had the highest affinity for all folate receptors, followed by 5MTHF, and lastly, by folinic acid, examined by several orders of magnitudes. Conclusion: These data are expected to provide new insights into the therapeutic applications of the different forms of folate in a variety of diseases.

5.
Hum Mutat ; 43(12): 2021-2032, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054333

RESUMEN

Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.


Asunto(s)
Defectos del Tubo Neural , Proteínas Represoras , Disrafia Espinal , Animales , Femenino , Humanos , Ratones , Embarazo , Receptor 1 de Folato/genética , Ácido Fólico , Mutación Missense , Defectos del Tubo Neural/genética , Células 3T3 NIH , Disrafia Espinal/genética , Células HeLa , Proteínas Represoras/genética
6.
Front Cell Dev Biol ; 10: 832492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265619

RESUMEN

Valproic acid (VPA, valproate, Depakote) is a commonly used anti-seizure medication (ASM) in the treatment of epilepsy and a variety of other neurological disorders. While VPA and other ASMs are efficacious for management of seizures, they also increase the risk for adverse pregnancy outcomes, including neural tube defects (NTDs). Thus, the utility of these drugs during pregnancy and in women of childbearing potential presents a continuing public health challenge. Elucidating the underlying genetic or metabolic risk factors for VPA-affected pregnancies may lead to development of non-teratogenic ASMs, novel prevention strategies, or more targeted methods for managing epileptic pregnancies. To address this challenge, we performed unbiased, whole embryo metabolomic screening of E8.5 mouse embryos from two inbred strains with differential susceptibility to VPA-induced NTDs. We identified metabolites of differential abundance between the two strains, both in response to VPA exposure and in the vehicle controls. Notable enriched pathways included lipid metabolism, carnitine metabolism, and several amino acid pathways, especially cysteine and methionine metabolism. There also was increased abundance of ω-oxidation products of VPA in the more NTD-sensitive strain, suggesting differential metabolism of the drug. Finally, we found significantly reduced levels of hypotaurine in the susceptible strain regardless of VPA status. Based on this information, we hypothesized that maternal supplementation with L-carnitine (400 mg/kg), coenzyme A (200 mg/kg), or hypotaurine (350 mg/kg) would reduce VPA-induced NTDs in the sensitive strain and found that administration of hypotaurine prior to VPA exposure significantly reduced the occurrence of NTDs by close to one-third compared to controls. L-carnitine and coenzyme A reduced resorption rates but did not significantly reduce NTD risk in the sensitive strain. These results suggest that genetic variants or environmental exposures influencing embryonic hypotaurine status may be factors in determining risk for adverse pregnancy outcomes when managing the health care needs of pregnant women exposed to VPA or other ASMs.

7.
Epigenetics ; 17(2): 133-146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33491544

RESUMEN

Neural tube defects (NTDs) are a group of common and severe congenital malformations. The PI3K-AKT signalling pathway plays a crucial role in the neural tube development. There is limited evidence concerning any possible association between aberrant methylation in PI3K-AKT signalling pathway genes and NTDs. Therefore, we aimed to investigate potential associations between aberrant methylation of PI3K-AKT pathway genes and NTDs. Methylation studies of PI3K-AKT pathway genes utilizing microarray genome-methylation data derived from neural tissues of ten NTD cases and eight non-malformed controls were performed. Targeted DNA methylation analysis was subsequently performed in an independent cohort of 73 NTD cases and 32 controls to validate the methylation levels of identified genes. siRNAs were used to pull-down the target genes in human embryonic stem cells (hESCs) to examine the effects of the aberrant expression of target genes on neural cells. As a result, 321 differentially hypermethylated CpG sites in the promoter regions of 30 PI3K-AKT pathway genes were identified in the microarray data. In target methylation analysis, CHRM1, FGF19, and ITGA7 were confirmed to be significantly hypermethylated in NTD cases and were associated with increased risk for NTDs. The down-regulation of FGF19, CHRM1, and ITGA7 impaired the formation of rosette-like cell aggregates. The down-regulation of those three genes affected the expression of PAX6, SOX2 and MAP2, implying their influence on the differentiation of neural cells. This study for the first time reported that hypermethylation of PI3K-AKT pathway genes such as CHRM1, FGF19, and ITGA7 is associated with human NTDs.


Asunto(s)
Defectos del Tubo Neural , Proteínas Proto-Oncogénicas c-akt , Antígenos CD/genética , Antígenos CD/metabolismo , Metilación de ADN , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Transducción de Señal
8.
Biology (Basel) ; 12(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36671766

RESUMEN

(1) Background: The genetic etiology of most patients with cerebral folate deficiency (CFD) remains poorly understood. KDM6B variants were reported to cause neurodevelopmental diseases; however, the association between KDM6B and CFD is unknown; (2) Methods: Exome sequencing (ES) was performed on 48 isolated CFD cases. The effect of KDM6B variants on KDM6B protein expression, Histone H3 lysine 27 epigenetic modification and FOLR1 expression were examined in vitro. For each patient, serum FOLR1 autoantibodies were measured; (3) Results: Six KDM6B variants were identified in five CFD patients, which accounts for 10% of our CFD cohort cases. Functional experiments indicated that these KDM6B variants decreased the amount of KDM6B protein, which resulted in elevated H3K27me2, lower H3K27Ac and decreased FOLR1 protein concentrations. In addition, FOLR1 autoantibodies have been identified in serum; (4) Conclusion: Our study raises the possibility that KDM6B may be a novel CFD candidate gene in humans. Variants in KDM6B could downregulate FOLR1 gene expression, and might also predispose carriers to the development of FOLR1 autoantibodies.

9.
Front Genet ; 12: 659612, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040637

RESUMEN

Human structural congenital malformations are the leading cause of infant mortality in the United States. Estimates from the United States Center for Disease Control and Prevention (CDC) determine that close to 3% of all United States newborns present with birth defects; the worldwide estimate approaches 6% of infants presenting with congenital anomalies. The scientific community has recognized for decades that the majority of birth defects have undetermined etiologies, although we propose that environmental agents interacting with inherited susceptibility genes are the major contributing factors. Neural tube defects (NTDs) are among the most prevalent human birth defects and as such, these malformations will be the primary focus of this review. NTDs result from failures in embryonic central nervous system development and are classified by their anatomical locations. Defects in the posterior portion of the neural tube are referred to as meningomyeloceles (spina bifida), while the more anterior defects are differentiated as anencephaly, encephalocele, or iniencephaly. Craniorachischisis involves a failure of the neural folds to elevate and thus disrupt the entire length of the neural tube. Worldwide NTDs have a prevalence of approximately 18.6 per 10,000 live births. It is widely believed that genetic factors are responsible for some 70% of NTDs, while the intrauterine environment tips the balance toward neurulation failure in at risk individuals. Despite aggressive educational campaigns to inform the public about folic acid supplementation and the benefits of providing mandatory folic acid food fortification in the United States, NTDs still affect up to 2,300 United States births annually and some 166,000 spina bifida patients currently live in the United States, more than half of whom are now adults. Within the context of this review, we will consider the role of maternal nutritional status (deficiency states involving B vitamins and one carbon analytes) and the potential modifiers of NTD risk beyond folic acid. There are several well-established human teratogens that contribute to the population burden of NTDs, including: industrial waste and pollutants [e.g., arsenic, pesticides, and polycyclic aromatic hydrocarbons (PAHs)], pharmaceuticals (e.g., anti-epileptic medications), and maternal hyperthermia during the first trimester. Animal models for these teratogens are described with attention focused on valproic acid (VPA; Depakote). Genetic interrogation of model systems involving VPA will be used as a model approach to discerning susceptibility factors that define the gene-environment interactions contributing to the etiology of NTDs.

10.
J Med Genet ; 58(7): 484-494, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32820034

RESUMEN

Background Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including FOLR1 (folate receptor alpha, FRα), DHFR (dihydrofolate reductase) and PCFT (proton coupled folate transporter) have been previously identified in patients with CFD. Methods In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios. Results Notably, we found a de novo stop gain mutation in the capicua (CIC) gene. Using 48 sporadic CFD samples as a validation cohort, we identified three additional rare variants in CIC that are putatively deleterious mutations. Functional analysis indicates that CIC binds to an octameric sequence in the promoter regions of folate transport genes: FOLR1, PCFT and reduced folate carrier (Slc19A1; RFC1). The CIC nonsense variant (p.R353X) downregulated FOLR1 expression in HeLa cells as well as in the induced pluripotent stem cell (iPSCs) derived from the original CFD proband. Folate binding assay demonstrated that the p.R353X variant decreased cellular binding of folic acid in cells. Conclusion This study indicates that CIC loss of function variants can contribute to the genetic aetiology of CFD through regulating FOLR1 expression. Our study described the first mutations in a non-folate pathway gene that can contribute to the aetiology of CFD.


Asunto(s)
Cerebro/metabolismo , Receptor 1 de Folato/genética , Deficiencia de Ácido Fólico/líquido cefalorraquídeo , Mutación con Pérdida de Función , Enfermedades del Sistema Nervioso/líquido cefalorraquídeo , Proteínas Represoras/genética , Tetrahidrofolatos/líquido cefalorraquídeo , Células Cultivadas , Regulación hacia Abajo , Femenino , Receptor 1 de Folato/deficiencia , Deficiencia de Ácido Fólico/genética , Células HEK293 , Humanos , Masculino , Enfermedades del Sistema Nervioso/genética , Distrofias Neuroaxonales , Linaje , Análisis de Secuencia de ADN
11.
Hum Mol Genet ; 29(18): 3132-3144, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32969478

RESUMEN

Neural tube defects (NTDs) are a group of severe congenital malformations caused by a failure of neural tube closure during early embryonic development. Although extensively investigated, the genetic etiology of NTDs remains poorly understood. FKBP8 is critical for proper mammalian neural tube closure. Fkbp8-/- mouse embryos showed posterior NTDs consistent with a diagnosis of spina bifida (SB). To date, no publication has reported any association between FKBP8 and human NTDs. Using Sanger sequencing on genomic DNA samples from 472 SB and 565 control samples, we identified five rare (MAF ≤ 0.001) deleterious variants in SB patients, while no rare deleterious variant was identified in the controls (P = 0.0191). p.Glu140* affected FKBP8 localization to the mitochondria and created a truncated form of the FKBP8 protein, thus impairing its interaction with BCL2 and ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. p.Lys315Asn further increased the cellular apoptosis. RNA sequencing on anterior and posterior tissues isolated from Fkbp8-/- and wildtype mice at E9.5 and E10.5 showed that Fkbp8-/- embryos have an abnormal expression profile within tissues harvested at posterior sites, thus leading to a posterior NTD. Moreover, we found that Fkbp8 knockout mouse embryos have abnormal expression of Wnt3a and Nkx2.9 during the early stage of neural tube development, perhaps also contributing to caudal specific NTDs. These findings provide evidence that functional variants of FKBP8 are risk factors for SB, which may involve a novel mechanism by which Fkbp8 mutations specifically cause SB in mice.


Asunto(s)
Proteínas de Homeodominio/genética , Disrafia Espinal/genética , Proteínas de Unión a Tacrolimus/genética , Factores de Transcripción/genética , Proteína Wnt3A/genética , Animales , Apoptosis/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Masculino , Ratones , Ratones Noqueados , Malformaciones del Sistema Nervioso , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Factores de Riesgo , Disrafia Espinal/patología
12.
Prenat Diagn ; 40(9): 1047-1055, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468575

RESUMEN

Every year nearly 6 percent of children worldwide are born with a serious congenital malformation, resulting in death or lifelong disability. In the United States, birth defects remain one of the leading causes of infant mortality. Among the common structural congenital defects are conditions known as neural tube defects (NTDs). These are a class of malformation of the brain and spinal cord where the neural tube fails to close during the neurulation. Although NTDs remain among the most pervasive and debilitating of all human developmental anomalies, there is insufficient understanding of their etiology. Previous studies have proposed that complex birth defects like NTDs are likely omnigenic, involving interconnected gene regulatory networks with associated signals throughout the genome. Advances in technologies have allowed researchers to more critically investigate regulatory gene networks in ever increasing detail, informing our understanding of the genetic basis of NTDs. Employing a systematic analysis of these complex birth defects using massively parallel DNA sequencing with stringent bioinformatic algorithms, it is possible to approach a greater level of understanding of the genomic architecture underlying NTDs. Herein, we present a brief overview of different approaches undertaken in our laboratory to dissect out the genetics of susceptibility to NTDs. This involves the use of mouse models to identify candidate genes, as well as large scale whole genome/whole exome (WGS/WES) studies to interrogate the genomic landscape of NTDs. The goal of this research is to elucidate the gene-environment interactions contributing to NTDs, thus encouraging global research efforts in their prevention.


Asunto(s)
Genómica/métodos , Defectos del Tubo Neural/genética , Animales , Anticonvulsivantes/efectos adversos , Anomalías Congénitas/epidemiología , Anomalías Congénitas/etiología , Anomalías Congénitas/genética , Modelos Animales de Enfermedad , Femenino , Genómica/tendencias , Humanos , Tubo Neural/embriología , Tubo Neural/metabolismo , Defectos del Tubo Neural/epidemiología , Neurulación/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología , Efectos Tardíos de la Exposición Prenatal/genética , Secuenciación del Exoma
13.
Birth Defects Res ; 112(13): 1014-1024, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32077266

RESUMEN

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs), which include paroxetine (Paxil), sertraline (Zoloft), fluoxetine (Prozac), citalopram (Celexa), and escitalopram (Lexapro), are the most common antidepressants prescribed to pregnant women. There is considerable debate in the literature regarding the developmental toxicities of SSRIs individually, and as a class. METHODS: It is considered unethical to perform developmental toxicity studies on pregnant women, but rodent and nonrodent species provide laboratory-controlled experimental models to examine the toxicity of SSRI exposure during pregnancy. The Embryo-Fetal Developmental Toxicity Study was conducted with sertraline in mice, Crl:CD1 (lCR), during the period of organogenesis. RESULTS: Increased resorption rates, lower fetal weight, and increased percentage of fetuses with visceral and skeletal abnormalities were found in the intermediate and high sertraline dose groups. In addition to incomplete ossification of treated animals, eleven sertraline exposed fetuses, two in group 2 (5 mg/kg), five in group 3 (25 mg/kg), and four in group 4 (60 mg/kg), had cleft palate (CP). This malformation was not observed in any controls. Only the highest dose of sertraline was found to be maternally toxic, as evidenced by significantly lower weight gain during pregnancy. CONCLUSION: These data indicate that in utero exposure to sertraline at 25 and 60 mg/kg was embryotoxic, teratogenic, and fetotoxic in mice. The incidence of CP observed in groups 3 and 4 (2.99% and 2.5%, respectively) were higher than the maximum range value noted in historical controls and indicate sertraline is a teratogen in ICR mice.


Asunto(s)
Inhibidores Selectivos de la Recaptación de Serotonina , Sertralina , Animales , Citalopram , Femenino , Humanos , Ratones , Ratones Endogámicos ICR , Paroxetina , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Sertralina/toxicidad
14.
Environ Health Perspect ; 128(1): 17010, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31939706

RESUMEN

BACKGROUND: Tributyltin (TBT) is a persistent and bioaccumulative environmental toxicant. Developmental exposure to TBT has been shown to cause fatty liver disease (steatosis), as well as increased adiposity in many species, leading to its characterization as an obesogen. OBJECTIVE: We aimed to determine the long-term effects of developmental TBT exposure on the liver. METHODS: C57BL/6J mice were exposed to a dose of TBT (0.5mg/kg body weight per day; 3.07µM) below the current developmental no observed adverse effect level (NOAEL) via drinking water, or drinking water alone, provided to the dam from preconception through lactation. Sires were exposed during breeding and lactation. Pups from two parity cycles were included in this study. Animals were followed longitudinally, and livers of offspring were analyzed by pathological evaluation, immunohistochemistry, immunoblotting, and RNA sequencing. RESULTS: Developmental exposure to TBT led to increased adiposity and hepatic steatosis at 14 and 20 weeks of age and increased liver adenomas at 45 weeks of age in male offspring. Female offspring displayed increased adiposity as compared with males, but TBT did not lead to an increase in fatty liver or tumor development in female offspring. Liver tumors in male mice were enriched in pathways and gene signatures associated with human and rodent nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). This includes down-regulation of growth hormone receptor (GHR) and of STAT5 signaling, which occurred in response to TBT exposure and preceded liver tumor development. CONCLUSIONS: These data reveal a previously unappreciated ability of TBT to increase risk for liver tumorigenesis in mice in a sex-specific manner. Taken together, these findings provide new insights into how early life environmental exposures contribute to liver disease in adulthood. https://doi.org/10.1289/EHP5414.


Asunto(s)
Contaminantes Ambientales/toxicidad , Compuestos Orgánicos de Estaño/toxicidad , Adiposidad , Animales , Humanos , Neoplasias Hepáticas/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Pruebas de Toxicidad
15.
Hum Mutat ; 41(4): 786-799, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31898828

RESUMEN

DNA damage response (DDR) genes orchestrating the network of DNA repair, cell cycle control, are essential for the rapid proliferation of neural progenitor cells. To date, the potential association between specific DDR genes and the risk of human neural tube defects (NTDs) has not been investigated. Using whole-genome sequencing and targeted sequencing, we identified significant enrichment of rare deleterious RAD9B variants in spina bifida cases compared to controls (8/409 vs. 0/298; p = .0241). Among the eight identified variants, the two frameshift mutants and p.Gln146Glu affected RAD9B nuclear localization. The two frameshift mutants also decreased the protein level of RAD9B. p.Ser354Gly, as well as the two frameshifts, affected the cell proliferation rate. Finally, p.Ser354Gly, p.Ser10Gly, p.Ile112Met, p.Gln146Glu, and the two frameshift variants showed a decreased ability for activating JNK phosphorylation. RAD9B knockdowns in human embryonic stem cells profoundly affected early differentiation through impairing PAX6 and OCT4 expression. RAD9B deficiency impeded in vitro formation of neural organoids, a 3D cell culture model for human neural development. Furthermore, the RNA-seq data revealed that loss of RAD9B dysregulates cell adhesion genes during organoid formation. These results represent the first demonstration of a DDR gene as an NTD risk factor in humans.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Predisposición Genética a la Enfermedad , Defectos del Tubo Neural/genética , Disrafia Espinal/genética , Estudios de Casos y Controles , Línea Celular , Daño del ADN , Reparación del ADN , Células Madre Embrionarias/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Mutación con Pérdida de Función , Mutación , Defectos del Tubo Neural/diagnóstico , Neuronas/metabolismo , Medición de Riesgo , Factores de Riesgo , Disrafia Espinal/diagnóstico
16.
J Pediatr Surg ; 55(3): 475-481, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31301886

RESUMEN

BACKGROUND/PURPOSE: In 2004, a heritable occurrence of spina bifida was reported in sheep on a farm in the United States. We maintained and characterized the spina bifida phenotype in this flock to assess its potential as an alternative surgical model. METHODS: A breeding strategy was developed in which the sheep were crossed to maintain or increase the occurrence of spina bifida. Measurements and observations were recorded regarding lesion size, birthweight, ambulatory capacity, or urological function, and necropsies were performed on spina bifida afflicted lambs in conjunction with magnetic resonance imaging to determine the character of the spina bifida defects and assess the presence of Chiari-like malformations or hydrocephalus. RESULTS: The defects were observed to be more prevalent in ram lambs, and the rate of spina bifida per litter could be increased through backcrossing or by selection of a productive ewe breed. The lambs displayed a range of ambulatory and urological deficits which could be used to evaluate new fetal repair methodologies. Finally, affected lambs were shown to demonstrate severe Chiari malformations and hydrocephalus. CONCLUSIONS: We have determined that use of these sheep as a natural source for spina bifida fetuses is feasible and could supplement the deficits of current sheep models for myelomeningocele repair. LEVEL OF EVIDENCE: Level IV.


Asunto(s)
Modelos Animales de Enfermedad , Fetoscopía , Meningomielocele , Disrafia Espinal , Animales , Femenino , Meningomielocele/genética , Meningomielocele/patología , Meningomielocele/cirugía , Embarazo , Ovinos , Disrafia Espinal/patología , Disrafia Espinal/cirugía
17.
AIDS ; 33(13): 1967-1976, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259764

RESUMEN

OBJECTIVE: Maternal folate (vitamin B9) status is the largest known modifier of neural tube defect risk, so we evaluated folate-related mechanisms of action for dolutegravir (DTG) developmental toxicity. DESIGN: Folate receptor 1 (FOLR1) was examined as a target for DTG developmental toxicity using protein and cellular interaction studies and an animal model. METHODS: FOLR1 competitive binding studies were used to test DTG for FOLR1 antagonism. Human placenta cell line studies were used to test interactions with DTG, folate, and cations. Zebrafish were selected as an animal model to examine DTG-induced developmental toxicity and rescue strategies. RESULTS: FOLR1 binding studies indicate DTG is a noncompetitive FOLR1 antagonist at therapeutic concentrations. In-vitro testing indicates calcium (2 mmol/l) increases FOLR1-folate interactions and alters DTG-FOLR1-folate interactions and cytotoxicity. DTG does not inhibit downstream folate metabolism by dihydrofolate reductase. Early embryonic exposure to DTG is developmentally toxic in zebrafish, and supplemental folic acid can mitigate DTG developmental toxicity. CONCLUSION: Folates and FOLR1 are established modifiers of risk for neural tube defects, and binding data indicates DTG is a partial antagonist of FOLR1. Supplemental folate can ameliorate increased developmental toxicity due to DTG in zebrafish. The results from these studies are expected to inform and guide future animal models and clinical studies of DTG-based antiretroviral therapy in women of childbearing age.


Asunto(s)
Receptor 1 de Folato/antagonistas & inhibidores , Ácido Fólico/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/toxicidad , Proteínas de Pez Cebra/antagonistas & inhibidores , Pez Cebra/embriología , Animales , Línea Celular , Suplementos Dietéticos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Receptor 1 de Folato/genética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/toxicidad , Humanos , Modelos Animales , Oxazinas , Piperazinas , Embarazo , Piridonas , Pruebas de Toxicidad , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
Birth Defects Res ; 111(14): 1013-1023, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30325584

RESUMEN

OBJECTIVES: The anticonvulsant valproic acid (VPA) has a known teratogenic effect capable of inducing major congenital malformations and developmental disorders. A comparative teratogenicity study of VPA and its analog valnoctamide (VCD), which is a new generation candidate antiepileptic drug, was carried out using Swiss Vancouver (SWV) mice. METHODS: Pregnant SWV dams were treated with either a single intraperitoneal injection of VPA (1.8 and 2.7 mmol/kg), VCD (1.8 and 2.7 mmol/kg), or vehicle on E8:12 (gestational day:hour). The numbers of implantation and resorption, viable and dead fetuses, and the presence of gross fetal visceral and skeletal abnormalities were determined (E18). Real-time Polymerase chain reaction (RT-PCR) arrays were used to analyze the expression of 84 genes related to the processes of neurogenesis and neural stem cell differentiation. RESULTS: Significant decreases in pregnancy weight gain and the number of live fetuses were observed when VPA was administered at the high dose, whereas the percentage of exencephalic fetuses was significantly increased in VPA treated compared with an equivalent VCD dosage group. There was a dose-related increase in visceral defects in the VPA-exposed fetuses. Missing skull bones and fused vertebrae in fetuses occurred at the high dose of VPA. Three genes (Mtap2, Bmp8b, and Stat3) were significantly upregulated and one (Heyl) was downregulated in samples from VPA-treated dams. CONCLUSIONS: The study demonstrates that the teratogenicity of VPA was significantly greater than that of an equimolar dose of VCD. Four genes (Mtap2, Bmp8b, Stat3, and Heyl) represent candidate target genes for the underlying teratogenic mechanism responsible for VPA-induced malformations.


Asunto(s)
Amidas/efectos adversos , Teratogénesis/efectos de los fármacos , Ácido Valproico/efectos adversos , Anomalías Inducidas por Medicamentos/etiología , Anomalías Inducidas por Medicamentos/fisiopatología , Amidas/farmacología , Animales , Anticonvulsivantes/efectos adversos , Femenino , Muerte Fetal , Feto/efectos de los fármacos , Ratones , Defectos del Tubo Neural/inducido químicamente , Embarazo , Teratógenos/metabolismo , Teratoma/etiología , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacología
19.
Reprod Toxicol ; 81: 220-228, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103011

RESUMEN

The assays in this study utilize mouse embryonic stem cells (mESCs) and zebrafish embryos to evaluate the potential developmental toxicity of industrial and pharmaceutical chemicals. A set of eleven chemicals of known mammalian in vivo teratogenicity were tested in the assays and correlations to mammalian data. Using mESCs, proliferation, differentiation, and cytotoxicity of the chemicals were measured. In zebrafish embryos, lethality and the lowest effect level concentrations for morphological malformations were determined. Clustering of the assays based on frequency of affected assays resulted in a ranking of the test compounds that correlated to in vivo rodent data (R = 0.88, P < 0.001). We conclude that the combination of ESC- and zebrafish-based assays provides a valuable platform for the prioritization of pharmaceutical and industrial chemicals for further testing of developmental toxicity in rodents.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Pez Cebra/anomalías , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión no Mamífero/anomalías , Ratones
20.
Birth Defects Res ; 110(12): 973-981, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29732742

RESUMEN

BACKGROUND: Folate receptors (FRs) facilitate embryonic uptake of folates and are important for proper early embryonic development. There is accumulating evidence that blocking FR autoantibodies contribute to developmental diseases. However, genetic factors associated with the expression of FR autoantibodies remain unknown. OBJECTIVE: We investigated the effects of genetic polymorphisms in folate pathway genes on FR autoantibody titers in women. METHODS: We recruited 302 pregnant women in China. The FR antigen-down immunoassay was used to measure levels of FR autoantibodies including human immunoglobulin G (IgG) and immunoglobulin M (IgM) in maternal plasma. Genotypes were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry and polymerase chain reaction methods. General linear model was used to analyze the effects of genetic variants on FR autoantibody levels. RESULTS: Significant associations were observed between genotypic variations and levels of FR autoantibodies. Plasma levels of FR autoantibodies in women with the TT genotype at MTHFR rs1801133 were significantly higher than those of women with the CC genotype (IgG: ß = 0.62, 95% CI 0.21-1.04; IgM: ß = 0.42, 95% CI 0.12-0.72). For DNMT3A rs7560488, the level of FR autoantibody IgG significantly increased in the TT genotype compared with CC genotype (ß = 0.90, 95% CI 0.20-1.59). For MTHFD2 rs828903, genotype GG was associated with elevated levels of FR autoantibody IgM compared to the AA genotype (ß = 0.60, 95% CI 0.10-1.10). No association was detected between genetic variants of the DHFR gene with FR autoantibodies levels. CONCLUSION: Genetic variations in MTHFR, DNMT3A, and MTHFD2 genes were associated with elevated plasma levels of FR autoantibodies.


Asunto(s)
Autoanticuerpos/sangre , Receptores de Folato Anclados a GPI/genética , Ácido Fólico/metabolismo , Variación Genética , Adulto , Estudios de Casos y Controles , Femenino , Homocistinuria/genética , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Espasticidad Muscular/genética , Defectos del Tubo Neural/genética , Polimorfismo de Nucleótido Simple/genética , Embarazo , Trastornos Psicóticos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...