Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Discoveries (Craiova) ; 11(3): e174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38405426

RESUMEN

BACKGROUND: Platelet Inhibition and Clinical Outcomes (PLATO) was a multicenter, randomized double-blind trial assessing efficacy and safety of ticagrelor versus clopidogrel in patients with acute coronary syndrome. The reported mortality benefit of ticagrelor in the PLATO trial has been challenged for over decade, and never confirmed in later trials. OBJECTIVE: To compare if there were any differences when deaths were reported to the FDAby the sponsors or by independent Contract Research Organizations (CRO). METHODS: We obtained the complete PLATO deaths dataset reported to the FDA and revealed that some events were inaccurately reported favoring ticagrelor. The entire FDA list contains precisely detailed 938 PLATO deaths. The CRO reported outcomes from the USA, Russia, Georgia, and most of Ukraine, while sites in 39 other countries were controlled by the trial sponsors. We compared vascular- (code "11"), non-vascular- (code "12"), and unknown (code "97") deaths triaged by the reporting source. RESULTS: Overall, most PLATO deaths were vascular (n=677), less non-vascular (n=159) andunexpectedly many of "other" (n=7) or "unknown" (n=95) origin reported either by sponsors (n=807) or CRO (n=131). The trial sponsors reported more clopidogrel deaths from vascular (313 vs.239), non-vascular (86 vs.58) and unknown (53 vs. 26) causes.In contrast, CRO-monitored sites reported significantly (72 vs. 53; p<0.01) more ticagrelordeaths than after clopidogrel from vascular (51 vs.39), non-vascular (8 vs.7) and unknown (10 vs. 4) causes. CONCLUSION: Deaths were reported differently by sponsors and CRO within the same trial. Since some deaths were misreported by PLATO sponsors, only the CRO data seems mostly reliable. Among all countries, the CRO - reported PLATO-USA outcomes represent the largest and most realistic dataset of realistic evidence suggesting ticagrelor inferiority to clopidogrel for all primary endpoint components including vascular death.

3.
Arch Med Res ; 51(3): 268-277, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143939

RESUMEN

BACKGROUND: There is evidence that the pharmacokinetics of certain drugs in Mexicans may differ with respect to other ethnic groups. On the other hand, there is controversy about the existence of interethnic variability in the pharmacokinetics of ciprofloxacin. AIM OF THE STUDY: To study oral ciprofloxacin pharmacokinetics in Mexicans at various dose levels and make comparisons with other populations in order to gain insight on interethnic variability. METHODS: Healthy Mexican volunteers received oral ciprofloxacin as 250 mg and 500 mg immediate-release tablets or a 1,000 mg extended-release formulation. Plasma concentration against time curves were constructed, and pharmacokinetic parameters were compared with those reported for other populations. RESULTS: Ciprofloxacin pharmacokinetics in Mexicans was linear and no significant differences between males and females were detected. When several populations were compared, it appeared that bioavailability in Mexicans was similar to that of Caucasians, being lower than that of Asians. These variations were attenuated when data were normalized by body weight. CONCLUSIONS: Ciprofloxacin pharmacokinetics exhibit interethnic variability, Asians exhibiting an increased bioavailability with regard to Mexicans and Caucasians. Data suggest that these differences are due to body weight.


Asunto(s)
Ciprofloxacina/sangre , Ciprofloxacina/farmacocinética , Voluntarios Sanos/estadística & datos numéricos , Administración Oral , Adulto , Pueblo Asiatico , Disponibilidad Biológica , Peso Corporal/fisiología , Etnicidad , Femenino , Humanos , Masculino , México , Población Blanca , Adulto Joven
4.
Cond Med ; 3(1): 18-30, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34268485

RESUMEN

Acute myocardial infarction (AMI), and the heart failure (HF) that often follows, are leading causes of death and disability worldwide. Crucially, there are currently no effective treatments, other than myocardial reperfusion, for reducing myocardial infarct (MI) size and preventing HF following AMI. Thus, there is an unmet need to discover novel cardioprotective therapies to reduce MI size, and prevent HF in AMI patients. Although a large number of therapies have been shown to reduce MI size in experimental studies, the majority have failed to benefit AMI patients. Failure to deliver cardioprotective therapy to the ischemic heart in sufficient concentrations following AMI is a major factor for the lack of success observed in previous clinical cardioprotection studies. Therefore, new strategies are needed to improve the delivery of cardioprotective therapies to the ischemic heart following AMI. In this regard, nanoparticles have emerged as drug delivery systems for improving the bioavailability, delivery, and release of cardioprotective therapies, and should result in improved efficacy in terms of reducing MI size and preventing HF. In this article, we provide a review of currently available nanoparticles, some of which have been FDA-approved, in terms of their use as drug delivery systems in cardiovascular disease and cardioprotection.

5.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443187

RESUMEN

Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined. Methods: Adult pigs (30-40 kg) were subjected to closed-chest 90-min left anterior descending artery ischemia followed by 72 h of reperfusion and were randomized to receive an intracoronary bolus of either mdivi-1 (1.2 mg/kg, a small molecule inhibitor of the mitochondrial fission protein, Drp1) or vehicle control, 10-min prior to reperfusion. The left ventricular (LV) size and function were both assessed by transthoracic echocardiography prior to AMI and after 72 h of reperfusion. MI size and the area-at-risk (AAR) were determined using dual staining with Tetrazolium and Evans blue. Heart samples were collected for histological determination of fibrosis and for electron microscopic analysis of mitochondrial morphology. Results: A total of 14 pigs underwent the treatment protocols (eight control and six mdivi-1). Administration of mdivi-1 immediately prior to the onset of reperfusion did not reduce MI size (MI size as % of AAR: Control 49.2 ± 8.6 vs. mdivi-1 50.5 ± 11.4; p = 0.815) or preserve LV systolic function (LV ejection fraction %: Control 67.5 ± 0.4 vs. mdivi-1 59.6 ± 0.6; p = 0.420), when compared to vehicle control. Similarly, there were no differences in mitochondrial morphology or myocardial fibrosis between mdivi-1 and vehicle control groups. Conclusion: Our pilot study has shown that treatment with mdivi-1 (1.2 mg/kg) at the onset of reperfusion did not reduce MI size or preserve LV function in the clinically-relevant closed-chest pig AMI model. A larger study, testing different doses of mdivi-1 or using a more specific Drp1 inhibitor are required to confirm these findings.


Asunto(s)
Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Quinazolinonas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Dinámicas Mitocondriales/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Proyectos Piloto , Porcinos , Función Ventricular Izquierda/efectos de los fármacos
6.
Int J Mol Sci ; 20(10)2019 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-31109146

RESUMEN

Cardiovascular diseases are the leading cause of mortality worldwide. It is widely known that non-resolving inflammation results in atherosclerotic conditions, which are responsible for a host of downstream pathologies including thrombosis, myocardial infarction (MI), and neurovascular events. Macrophages, as part of the innate immune response, are among the most important cell types in every stage of atherosclerosis. In this review we discuss the principles governing macrophage function in the healthy and infarcted heart. More specifically, how cardiac macrophages participate in myocardial infarction as well as cardiac repair and remodeling. The intricate balance between phenotypically heterogeneous populations of macrophages in the heart have profound and highly orchestrated effects during different phases of myocardial infarction. In the early "inflammatory" stage of MI, resident cardiac macrophages are replaced by classically activated macrophages derived from the bone marrow and spleen. And while the macrophage population shifts towards an alternatively activated phenotype, the inflammatory response subsides giving way to the "reparative/proliferative" phase. Lastly, we describe the therapeutic potential of cardiac macrophages in the context of cell-mediated cardio-protection. Promising results demonstrate innovative concepts; one employing a subset of yolk sac-derived, cardiac macrophages that have complete restorative capacity in the injured myocardium of neonatal mice, and in another example, post-conditioning of cardiac macrophages with cardiosphere-derived cells significantly improved patient's post-MI diagnoses.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Inmunidad Innata , Macrófagos/inmunología , Miocardio/inmunología , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/terapia , Corazón/fisiopatología , Humanos , Macrófagos/patología , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Miocardio/citología , Miocardio/patología , Factores Protectores , Remodelación Ventricular
7.
Cardiovasc Res ; 115(7): 1117-1130, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825305

RESUMEN

New therapies are required to reduce myocardial infarct (MI) size and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI), one of the leading causes of death and disability globally. In this regard, the immune cell response to AMI, which comprises an initial pro-inflammatory reaction followed by an anti-inflammatory phase, contributes to final MI size and post-AMI remodelling [changes in left ventricular (LV) size and function]. The transition between these two phases is critical in this regard, with a persistent and severe pro-inflammatory reaction leading to adverse LV remodelling and increased propensity for developing heart failure. In this review article, we provide an overview of the immune cells involved in orchestrating the complex and dynamic inflammatory response to AMI-these include neutrophils, monocytes/macrophages, and emerging players such as dendritic cells, lymphocytes, pericardial lymphoid cells, endothelial cells, and cardiac fibroblasts. We discuss potential reasons for past failures of anti-inflammatory cardioprotective therapies, and highlight new treatment targets for modulating the immune cell response to AMI, as a potential therapeutic strategy to improve clinical outcomes in AMI patients. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


Asunto(s)
Antiinflamatorios/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Insuficiencia Cardíaca/prevención & control , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/inmunología , Animales , Antiinflamatorios/efectos adversos , Fármacos Cardiovasculares/efectos adversos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Fibroblastos/metabolismo , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Mastocitos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
8.
Arterioscler Thromb Vasc Biol ; 39(3): 387-401, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30651003

RESUMEN

Objective- Atherosclerotic coronary artery disease is the leading cause of death worldwide, and current treatment options are insufficient. Using systems-level network cluster analyses on a large coronary artery disease case-control cohort, we previously identified PCSK3 (proprotein convertase subtilisin/kexin family member 3; FURIN) as a member of several coronary artery disease-associated pathways. Thus, our objective is to determine the role of FURIN in atherosclerosis. Approach and Results- In vitro, FURIN inhibitor treatment resulted in reduced monocyte migration and reduced macrophage and vascular endothelial cell inflammatory and cytokine gene expression. In vivo, administration of an irreversible inhibitor of FURIN, α-1-PDX (α1-antitrypsin Portland), to hyperlipidemic Ldlr-/- mice resulted in lower atherosclerotic lesion area and a specific reduction in severe lesions. Significantly lower lesional macrophage and collagen area, as well as systemic inflammatory markers, were observed. MMP2 (matrix metallopeptidase 2), an effector of endothelial function and atherosclerotic lesion progression, and a FURIN substrate was significantly reduced in the aorta of inhibitor-treated mice. To determine FURIN's role in vascular endothelial function, we administered α-1-PDX to Apoe-/- mice harboring a wire injury in the common carotid artery. We observed significantly decreased carotid intimal thickness and lower plaque cellularity, smooth muscle cell, macrophage, and inflammatory marker content, suggesting protection against vascular remodeling. Overexpression of FURIN in this model resulted in a significant 67% increase in intimal plaque thickness, confirming that FURIN levels directly correlate with atherosclerosis. Conclusions- We show that systemic inhibition of FURIN in mice decreases vascular remodeling and atherosclerosis. FURIN-mediated modulation of MMP2 activity may contribute to the atheroprotection observed in these mice.


Asunto(s)
Aterosclerosis/prevención & control , Furina/antagonistas & inhibidores , Placa Aterosclerótica/tratamiento farmacológico , alfa 1-Antitripsina/uso terapéutico , Animales , Aorta/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Arteria Carótida Común , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Inducción Enzimática/efectos de los fármacos , Furina/genética , Furina/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/fisiología , Masculino , Metaloproteinasa 2 de la Matriz/análisis , Ratones , Ratones Endogámicos C57BL , Monocitos/fisiología , Placa Aterosclerótica/patología , Receptores de LDL/deficiencia , Túnica Íntima/efectos de los fármacos , Túnica Íntima/patología , Remodelación Vascular , alfa 1-Antitripsina/farmacología
9.
Cardiovasc Res ; 115(7): 1156-1166, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590395

RESUMEN

During an ST-elevation myocardial infarction (STEMI), the myocardium undergoes a prolonged period of ischaemia. Reperfusion therapy is essential to minimize cardiac injury but can paradoxically cause further damage. Experimental procedures to limit ischaemia and reperfusion (IR) injury have tended to focus on the cardiomyocytes since they are crucial for cardiac function. However, there is increasing evidence that non-cardiomyocyte resident cells in the heart (as discussed in a separate review in this Spotlight series) as well as circulating cells and factors play important roles in this pathology. For example, erythrocytes, in addition to their main oxygen-ferrying role, can protect the heart from IR injury via the export of nitric oxide bioactivity. Platelets are well-known to be involved in haemostasis and thrombosis, but beyond these roles, they secrete numerous factors including sphingosine-1 phosphate (S1P), platelet activating factor, and cytokines that can all strongly influence the development of IR injury. This is particularly relevant given that most STEMI patients receive at least one type of platelet inhibitor. Moreover, there are large numbers of circulating vesicles in the blood, including microvesicles and exosomes, which can exert both beneficial and detrimental effects on IR injury. Some of these effects are mediated by the transfer of microRNA (miRNA) to the heart. Synthetic miRNA molecules may offer an alternative approach to limiting the response to IR injury. We discuss these and other circulating factors, focussing on potential therapeutic targets relevant to IR injury. Given the prevalence of comorbidities such as diabetes in the target patient population, their influence will also be discussed. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


Asunto(s)
Plaquetas/metabolismo , Eritrocitos/metabolismo , Vesículas Extracelulares/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Infarto del Miocardio con Elevación del ST/terapia , Animales , Plaquetas/efectos de los fármacos , MicroARN Circulante/sangre , MicroARN Circulante/uso terapéutico , Vesículas Extracelulares/trasplante , Hemostasis , Humanos , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Infarto del Miocardio con Elevación del ST/sangre , Infarto del Miocardio con Elevación del ST/patología , Infarto del Miocardio con Elevación del ST/fisiopatología , Transducción de Señal
10.
Cardiovasc Res ; 115(7): 1131-1142, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576455

RESUMEN

Acute obstruction of a coronary artery causes myocardial ischaemia and if prolonged, may result in an ST-segment elevation myocardial infarction (STEMI). First-line treatment involves rapid reperfusion. However, a highly dynamic and co-ordinated inflammatory response is rapidly mounted to repair and remove the injured cells which, paradoxically, can further exacerbate myocardial injury. Furthermore, although cardiac remodelling may initially preserve some function to the heart, it can lead over time to adverse remodelling and eventually heart failure. Since the size of the infarct corresponds to the subsequent risk of developing heart failure, it is important to find ways to limit initial infarct development. In this review, we focus on the role of the innate immune system in the acute response to ischaemia-reperfusion (IR) and specifically its contribution to cell death and myocardial infarction. Numerous danger-associated molecular patterns are released from dying cells in the myocardium, which can stimulate pattern recognition receptors including toll like receptors and NOD-like receptors (NLRs) in resident cardiac and immune cells. Activation of the NLRP3 inflammasome, caspase 1, and pyroptosis may ensue, particularly when the myocardium has been previously aggravated by the presence of comorbidities. Evidence will be discussed that suggests agents targeting innate immunity may be a promising means of protecting the hearts of STEMI patients against acute IR injury. However, the dosing and timing of such agents should be carefully determined because innate immunity pathways may also be involved in cardioprotection. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


Asunto(s)
Antiinflamatorios/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Insuficiencia Cardíaca/prevención & control , Inmunidad Innata , Inflamasomas/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/inmunología , Infarto del Miocardio con Elevación del ST/terapia , Animales , Antiinflamatorios/efectos adversos , Fármacos Cardiovasculares/efectos adversos , Caspasa 1/inmunología , Caspasa 1/metabolismo , Inhibidores de Caspasas/uso terapéutico , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Terapia Molecular Dirigida , Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Infarto del Miocardio con Elevación del ST/inmunología , Infarto del Miocardio con Elevación del ST/metabolismo , Infarto del Miocardio con Elevación del ST/patología , Transducción de Señal
11.
Cond Med ; 1(6): 313-318, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30556056

RESUMEN

Ischemic heart disease (IHD) is one of the leading causes of death and disability worldwide. Platelets, as the main regulators of hemostasis, are major players in acute myocardial ischemia/reperfusion injury (IRI). Additionally, platelets are modified by endogenous cardioprotective strategies such as ischemic preconditioning, postconditioning, and remote ischemic conditioning. In this article, we provide an overview of the functionional role of platelets in acute myocardial IRI, and highlight their potential as targets for cardioprotection to improve health outcomes in patients with IHD.

12.
Cond Med ; 1(5): 247-258, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30338315

RESUMEN

One of the primary therapeutic goals of modern cardiology is to design strategies aimed at minimizing myocardial infarct size and optimizing cardiac function following acute myocardial infarction (AMI). Patients with AMI who underwent reperfusion therapy display dysfunction of the coronary endothelium. Consequently, ischemic endothelial cells become more permeable and weaken their natural anti-thrombotic and anti-inflammatory potential. Ischemia-reperfusion injury (IRI) is associated with activation of the humoral and cellular components of the hemostatic and innate immune system, and also with excessive production of reactive oxygen species (ROS), the inhibition of nitric oxide synthase, and with inflammatory processes. Given its essential role in the regulation of vascular homeostasis, involving platelets and leukocytes among others, dysfunctional endothelium can lead to increased risk of coronary vasospasm and thrombosis. Endothelial dysfunction can be prevented by ischemic conditioning with a protective intervention based on limited intermittent periods of ischemia and reperfusion. The molecular mechanisms and signal transduction pathways underlying conditioning phenomena in the coronary endothelium have been described as involving less ROS production, reduced adhesion of neutrophils to endothelial cells and diminished inflammatory reactions. This review summarizes our current understanding of the cellular and molecular mechanisms regulating IRI-affected and -damaged coronary endothelium, and how ischemic conditioning may preserve its function.

13.
Arch Med Res ; 49(8): 522-529, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30213474

RESUMEN

The presence of different APOE isoforms represents a well-known risk factor for cardiovascular diseases. Besides the pleiotropic effects of APOE polymorphism on heart and neurological diseases, this review summarizes the less-known functions of APOE and the possible implications for cardiovascular disorders. Beyond the role as lipid transporting protein, its involvement in lipid membrane homeostasis and signaling, as well as its nuclear transcriptional effects suggests a more complex role of APOE, receiving great interest from researchers and physicians from all medical fields. Due to the presence of different APOE isoforms in human population, understanding APOE's role in pathological processes represents not only a challenge, but a demand for further development of therapeutic strategies for cardiovascular diseases.


Asunto(s)
Apolipoproteínas E/metabolismo , Transporte Biológico/fisiología , Enfermedades Cardiovasculares/patología , Proteínas Portadoras/metabolismo , Metabolismo de los Lípidos/fisiología , Humanos , Lípidos , Enfermedades del Sistema Nervioso , Polimorfismo Genético , Isoformas de Proteínas/metabolismo , Factores de Riesgo
15.
Lipids Health Dis ; 17(1): 44, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523150

RESUMEN

BACKGROUND: Primary cultures endothelial cells have been used as models of endothelial related diseases such atherosclerosis. Biological behavior of primary cultures is donor-dependent and data could not be easily reproducible; endothelial cell lines are emerging options, particularly, human dermal microvascular endothelial cells (HMEC-1), that should be validated to substitute primary cultures for the study of HDL functions. METHODS: Morphology, size and granularity of cells were assessed by phase contrast microscopy and flow cytometry of HMEC-1. The adhesion molecules, ICAM-1and VCAM-1 after TNF-α stimulation, and endothelial markers CD105 endoglin, as well as HDL receptor SR-BI were determined by flow cytometry. Internalization of HDL protein was demonstrated by confocal microscopy using HDL labeled with Alexa Fluor 488. HUVECs were used as reference to compared the characteristics with HMEC-1. RESULTS: HMEC-1 and HUVEC had similar morphologies, size and granularity. HMEC-1 expressed endothelial markers as HUVECs, as well as functional SR-B1 receptor since the cell line was able to internalize HDL particles. HMEC-1 effectively increased ICAM-1 and VCAM-1 expression after TNF-α stimulation. HUVECs showed more sensibility to TNF-α stimulus but the range of ICAM-1 and VCAM-1 expression was less homogeneous than in HMEC-1, probably due to biological variation of the former. Finally, the expression of adhesion molecules in HMEC-1 was attenuated by co-incubation with HDL. CONCLUSION: HMEC-1 possess characteristics of endothelial cells, similar to HUVECs, being a cell line suitable to evaluate the functionality of HDL vis-à-vis the endothelium.


Asunto(s)
Endotelio Vascular/citología , Lipoproteínas HDL/metabolismo , Línea Celular Transformada , Endoglina/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Piel/citología , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/metabolismo
16.
Pharmacol Ther ; 186: 73-87, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29330085

RESUMEN

Acute myocardial infarction (AMI) and the heart failure that often follows, are major causes of death and disability worldwide. As such, new therapies are required to limit myocardial infarct (MI) size, prevent adverse left ventricular (LV) remodeling, and reduce the onset of heart failure following AMI. The inflammatory response to AMI, plays a critical role in determining MI size, and a persistent pro-inflammatory reaction can contribute to adverse post-MI LV remodeling, making inflammation an important therapeutic target for improving outcomes following AMI. In this article, we provide an overview of the multiple players (and their dynamic roles) involved in the complex inflammatory response to AMI and subsequent LV remodeling, and highlight future opportunities for targeting inflammation as a therapeutic strategy for limiting MI size, preventing adverse LV remodeling, and reducing heart failure in AMI patients.


Asunto(s)
Antiinflamatorios/uso terapéutico , Insuficiencia Cardíaca/prevención & control , Mediadores de Inflamación/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Animales , Antiinflamatorios/administración & dosificación , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/inmunología , Humanos , Inflamación , Infarto del Miocardio/inmunología , Remodelación Ventricular/inmunología
17.
Cardiology ; 138(4): 249-253, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28898876

RESUMEN

BACKGROUND: The US Food and Drug Administration Adverse Event Reporting System (FAERS) is a global passive surveillance database that relies on voluntary reporting by health care professionals and consumers as well as required mandatory reporting by pharmaceutical manufacturers. However, the initial filers and comparative patterns for oral P2Y12 platelet inhibitor reporting are unknown. We assessed who generated original FAERS reports for clopidogrel, prasugrel, and ticagrelor in 2015. METHODS: From the FAERS database we extracted and examined adverse event cases coreported with oral P2Y12 platelet inhibitors. All adverse event filing originating sources were dichotomized into consumers, lawyers, pharmacists, physicians, other health care professionals, and unknown. RESULTS: Overall, 2015 annual adverse events were more commonly coreported with clopidogrel (n = 13,234) with known source filers (n = 12,818, or 96.9%) than with prasugrel (2,896; 98.9% out of 2,927 cases) or ticagrelor (2,163, or 82.3%, out of 2,627 cases, respectively). Overall, most adverse events were filed by consumers (8,336, or 44.4%), followed by physicians (5,290, or 28.2%), other health care professionals (2,997, or 16.0%), pharmacists (1,125, or 6.0%), and finally by lawyers (129, or 0.7%). The origin of 811 (4.7%) initial reports remains unknown. The adverse event filing sources differ among drugs. While adverse events coreported with clopidogrel and prasugrel were commonly originated by patients (40.4 and 84.3%, respectively), most frequently ticagrelor reports (42.5%) were filed by physicians. CONCLUSION: The reporting quality and initial sources differ among oral P2Y12 platelet inhibitors in FAERS. The ticagrelor surveillance in 2015 was inadequate when compared to clopidogrel and prasugrel. Patients filed most adverse events for clopidogrel and prasugrel, while physicians originated most ticagrelor complaints. These differences justify stricter compliance control for ticagrelor manufacturers and may be attributed to the confusion of treating physicians with unexpected fatal, cardiac, and thrombotic adverse events linked to ticagrelor.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos , Bases de Datos Factuales/estadística & datos numéricos , Archivo/estadística & datos numéricos , Antagonistas del Receptor Purinérgico P2Y/efectos adversos , Adenosina/efectos adversos , Adenosina/análogos & derivados , Clopidogrel , Humanos , Seguridad del Paciente , Clorhidrato de Prasugrel/efectos adversos , Ticagrelor , Ticlopidina/efectos adversos , Ticlopidina/análogos & derivados , Estados Unidos , United States Food and Drug Administration
18.
Mediators Inflamm ; 2017: 4029641, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804220

RESUMEN

Extracellular bacterial ribonucleases such as binase from Bacillus pumilus possess cytotoxic activity against tumor cells with a potential for clinical application. Moreover, they may induce activation of tumor-derived macrophages either into the M1-phenotype with well-documented functions in the regulation of the antitumor immune response or into M2-macrophages that may stimulate tumor growth, metastasis, and angiogenesis. In this study, binase or endogenous RNase1 (but not RNA or short oligonucleotides) stimulated the expression of activated NF-κB p65 subunit in macrophages. Since no changes in MyD88 and TRIF adaptor protein expression were observed, toll-like receptors may not be involved in RNase-related NF-κB pathway activation. In addition, short exposure (0.5 hr) to binase induced the release of cytokines such as IL-6, МСР-1, or TNF-α (but not IL-4 and IL-10), indicative for the polarization into antitumor M1-macrophages. Thus, we revealed increased expression of activated NF-κB p65 subunit in macrophages upon stimulation by binase and RNase1, but not RNA or short oligonucleotides.


Asunto(s)
Bacillus pumilus/enzimología , Proteínas Bacterianas/farmacología , Endorribonucleasas/farmacología , Macrófagos/efectos de los fármacos , Ribonucleasas/farmacología , Células A549 , Animales , Línea Celular , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Ratones , Células RAW 264.7 , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Sci Rep ; 7(1): 4871, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687810

RESUMEN

T2-weighted cardiovascular magnetic resonance (CMR) using a 3-slice approach has been shown to accurately quantify the edema-based area-at-risk (AAR) in ST-segment elevation myocardial infarction (STEMI). We aimed to compare the performance of a 3-slice approach to full left ventricular (LV) coverage for the AAR by T1 and T2 mapping and MI size. Forty-eight STEMI patients were prospectively recruited and underwent a CMR at 4 ± 2 days. There was no difference between the AARfull LV and AAR3-slices by T1 (P = 0.054) and T2-mapping (P = 0.092), with good correlations but small biases and wide limits of agreements (T1-mapping: N = 30, R2 = 0.85, bias = 1.7 ± 9.4% LV; T2-mapping: N = 48, R2 = 0.75, bias = 1.7 ± 12.9% LV). There was also no significant difference between MI size3-slices and MI sizefull LV (P = 0.93) with an excellent correlation between the two (R2 0.92) but a small bias of 0.5% and a wide limit of agreement of ±7.7%. Although MSI was similar between the 2 approaches, MSI3-slices performed poorly when MSI was <0.50. Furthermore, using AAR3-slices and MI sizefull LV resulted in 'negative' MSI in 7/48 patients. Full LV coverage T1 and T2 mapping are more accurate than a 3-slice approach for delineating the AAR, especially in those with MSI < 0.50 and we would advocate full LV coverage in future studies.


Asunto(s)
Edema Cardíaco/diagnóstico por imagen , Edema Cardíaco/patología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Imagen por Resonancia Magnética/métodos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
20.
Sci Rep ; 7(1): 2271, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28536472

RESUMEN

T2-weighted cardiovascular magnetic resonance (T2-CMR) of myocardial edema can quantify the area-at-risk (AAR) following acute myocardial infarction (AMI), and has been used to assess myocardial salvage by new cardioprotective therapies. However, some of these therapies may reduce edema, leading to an underestimation of the AAR by T2-CMR. Here, we investigated arterial spin labeling (ASL) perfusion CMR as a novel approach to quantify the AAR following AMI. Adult B6sv129-mice were subjected to in vivo left coronary artery ligation for 30 minutes followed by 72 hours reperfusion. T2-mapping was used to quantify the edema-based AAR (% of left ventricle) following ischemic preconditioning (IPC) or cyclosporin-A (CsA) treatment. In control animals, the AAR by T2-mapping corresponded to that delineated by histology. As expected, both IPC and CsA reduced MI size. However, IPC, but not CsA, also reduced myocardial edema leading to an underestimation of the AAR by T2-mapping. In contrast, regions of reduced myocardial perfusion delineated by cardiac ASL were able to delineate the AAR when compared to both T2-mapping and histology in control animals, and were not affected by either IPC or CsA. Therefore, ASL perfusion CMR may be an alternative method for quantifying the AAR following AMI, which unlike T2-mapping, is not affected by IPC.


Asunto(s)
Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Animales , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Ventrículos Cardíacos/patología , Procesamiento de Imagen Asistido por Computador , Precondicionamiento Isquémico Miocárdico , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Infarto del Miocardio/terapia , Imagen de Perfusión Miocárdica , Miocardio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA