Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1865(2): 149035, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360260

RESUMEN

Rhodotorula mucilaginosa survives extreme conditions through several mechanisms, among them its carotenoid production and its branched mitochondrial respiratory chain (RC). Here, the branched RC composition was analyzed by biochemical and complexome profiling approaches. Expression of the different RC components varied depending on the growth phase and the carbon source present in the medium. R. mucilaginosa RC is constituted by all four orthodox respiratory complexes (CI to CIV) plus several alternative oxidoreductases, in particular two type-II NADH dehydrogenases (NDH2) and one alternative oxidase (AOX). Unlike others, in this yeast the activities of the orthodox and alternative respiratory complexes decreased in the stationary phase. We propose that the branched RC adaptability is an important factor for survival in extreme environmental conditions; thus, contributing to the exceptional resilience of R. mucilaginosa.


Asunto(s)
Extremófilos , Rhodotorula , Transporte de Electrón , Rhodotorula/química , Rhodotorula/metabolismo , Membranas Mitocondriales/metabolismo
2.
Elife ; 122023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823874

RESUMEN

Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.


Asunto(s)
Drosophila melanogaster , Membranas Mitocondriales , Animales , Transporte de Electrón/fisiología , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Mamíferos
3.
Nucleic Acids Res ; 51(19): 10619-10641, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37615582

RESUMEN

Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimized this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multiprotein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically induced mitochondrial DNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.


Asunto(s)
ADN Mitocondrial , Proteínas Mitocondriales , Proteómica , ARN Mitocondrial , Humanos , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica/métodos , ARN Mitocondrial/metabolismo
4.
PLoS Comput Biol ; 19(8): e1011090, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549177

RESUMEN

Complexome profiling allows large-scale, untargeted, and comprehensive characterization of protein complexes in a biological sample using a combined approach of separating intact protein complexes e.g., by native gel electrophoresis, followed by mass spectrometric analysis of the proteins in the resulting fractions. Over the last decade, its application has resulted in a large collection of complexome profiling datasets. While computational methods have been developed for the analysis of individual datasets, methods for large-scale comparative analysis of complexomes from multiple species are lacking. Here, we present Comparative Clustering (CompaCt), that performs fully automated integrative analysis of complexome profiling data from multiple species, enabling systematic characterization and comparison of complexomes. CompaCt implements a novel method for leveraging orthology in comparative analysis to allow systematic identification of conserved as well as taxon-specific elements of the analyzed complexomes. We applied this method to a collection of 53 complexome profiles spanning the major branches of the eukaryotes. We demonstrate the ability of CompaCt to robustly identify the composition of protein complexes, and show that integrated analysis of multiple datasets improves characterization of complexes from specific complexome profiles when compared to separate analyses. We identified novel candidate interactors and complexes in a number of species from previously analyzed datasets, like the emp24, the V-ATPase and mitochondrial ATP synthase complexes. Lastly, we demonstrate the utility of CompaCt for the automated large-scale characterization of the complexome of the mosquito Anopheles stephensi shedding light on the evolution of metazoan protein complexes. CompaCt is available from https://github.com/cmbi/compact-bio.


Asunto(s)
Eucariontes , Proteínas , Animales , Análisis por Conglomerados , Células Eucariotas/metabolismo , Espectrometría de Masas/métodos , Proteínas/metabolismo
5.
Mol Genet Metab ; 140(3): 107675, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37572574

RESUMEN

Recessive variants in NDUFAF3 are a known cause of complex I (CI)-related mitochondrial disorders (MDs). The seven patients reported to date exhibited severe neurologic symptoms and lactic acidosis, followed by a fatal course and death during infancy in most cases. We present a 10-year-old patient with a neurodevelopmental disorder, progressive exercise intolerance, dystonia, basal ganglia abnormalities, and elevated lactate concentration in blood. Trio-exome sequencing revealed compound-heterozygosity for a pathogenic splice-site and a likely pathogenic missense variant in NDUFAF3. Spectrophotometric analysis of fibroblast-derived mitochondria demonstrated a relatively mild reduction of CI activity. Complexome analyses revealed severely reduced NDUFAF3 as well as CI in patient fibroblasts. Accumulation of early sub-assemblies of the membrane arm of CI associated with mitochondrial complex I intermediate assembly (MCIA) complex was observed. The most striking additional findings were both the unusual occurrence of free monomeric CI holding MCIA and other assembly factors. Here we discuss our patient in context of genotype, phenotype and metabolite data from previously reported NDUFAF3 cases. With the atypical presentation of our patient, we provide further insight into the phenotypic spectrum of NDUFAF3-related MDs. Complexome analysis in our patient confirms the previously defined role of NDUFAF3 within CI biogenesis, yet adds new aspects regarding the correct timing of both the association of soluble and membrane arm modules and CI-maturation as well as respiratory supercomplex formation.


Asunto(s)
Acidosis Láctica , Enfermedades Mitocondriales , Humanos , Niño , Enfermedades Mitocondriales/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Secuenciación del Exoma , Acidosis Láctica/genética , Fenotipo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
6.
J Cell Sci ; 136(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401363

RESUMEN

Molecular functions of many human proteins remain unstudied, despite the demonstrated association with diseases or pivotal molecular structures, such as mitochondrial DNA (mtDNA). This small genome is crucial for the proper functioning of mitochondria, the energy-converting organelles. In mammals, mtDNA is arranged into macromolecular complexes called nucleoids that serve as functional stations for its maintenance and expression. Here, we aimed to explore an uncharacterized protein C17orf80, which was previously detected close to the nucleoid components by proximity labelling mass spectrometry. To investigate the subcellular localization and function of C17orf80, we took advantage of immunofluorescence microscopy, interaction proteomics and several biochemical assays. We demonstrate that C17orf80 is a mitochondrial membrane-associated protein that interacts with nucleoids even when mtDNA replication is inhibited. In addition, we show that C17orf80 is not essential for mtDNA maintenance and mitochondrial gene expression in cultured human cells. These results provide a basis for uncovering the molecular function of C17orf80 and the nature of its association with nucleoids, possibly leading to new insights about mtDNA and its expression.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Animales , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Replicación del ADN , Mamíferos/metabolismo
7.
Life Sci Alliance ; 6(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37094942

RESUMEN

Mitochondrial bc 1 complex from yeast has 10 subunits, but only cytochrome b (Cytb) subunit is encoded in the mitochondrial genome. Cytb has eight transmembrane helices containing two hemes b for electron transfer. Cbp3 and Cbp6 assist Cytb synthesis, and together with Cbp4 induce Cytb hemylation. Subunits Qcr7/Qcr8 participate in the first steps of assembly, and lack of Qcr7 reduces Cytb synthesis through an assembly-feedback mechanism involving Cbp3/Cbp6. Because Qcr7 resides near the Cytb carboxyl region, we wondered whether this region is important for Cytb synthesis/assembly. Although deletion of the Cytb C-region did not abrogate Cytb synthesis, the assembly-feedback regulation was lost, so Cytb synthesis was normal even if Qcr7 was missing. Mutants lacking the Cytb C-terminus were non-respiratory because of the absence of fully assembled bc 1 complex. By performing complexome profiling, we showed the existence of aberrant early-stage subassemblies in the mutant. In this work, we demonstrate that the C-terminal region of Cytb is critical for regulation of Cytb synthesis and bc 1 complex assembly.


Asunto(s)
Citocromos b , Proteínas de Saccharomyces cerevisiae , Citocromos b/genética , Citocromos b/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo III de Transporte de Electrones , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Proteínas Portadoras , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriales/genética
8.
Open Biol ; 13(3): 220363, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854377

RESUMEN

The tricarboxylic acid cycle is the central pathway of energy production in eukaryotic cells and plays a key part in aerobic respiration throughout all kingdoms of life. One of the pivotal enzymes in this cycle is 2-oxoglutarate dehydrogenase complex (OGDHC), which generates NADH by oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. OGDHC is a megadalton protein complex originally thought to be assembled from three catalytically active subunits (E1o, E2o, E3). In fungi and animals, however, the protein MRPS36 has more recently been proposed as a putative additional component. Based on extensive cross-linking mass spectrometry data supported by phylogenetic analyses, we provide evidence that MRPS36 is an important member of the eukaryotic OGDHC, with no prokaryotic orthologues. Comparative sequence analysis and computational structure predictions reveal that, in contrast with bacteria and archaea, eukaryotic E2o does not contain the peripheral subunit-binding domain (PSBD), for which we propose that MRPS36 evolved as an E3 adaptor protein, functionally replacing the PSBD. We further provide a refined structural model of the complete eukaryotic OGDHC of approximately 3.45 MDa with novel mechanistic insights.


Asunto(s)
Eucariontes , Células Eucariotas , Animales , Proteínas Adaptadoras Transductoras de Señales , Complejo Cetoglutarato Deshidrogenasa , Filogenia , Proteínas Ribosómicas/metabolismo
9.
EMBO J ; 41(16): e110476, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35912435

RESUMEN

Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+ /H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.


Asunto(s)
Proteostasis , Protones , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo
10.
EMBO J ; 41(17): e110784, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35859387

RESUMEN

The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long-lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.


Asunto(s)
Factor Inductor de la Apoptosis , Complejo I de Transporte de Electrón , Proteínas de Transporte de Membrana Mitocondrial , Factor Inductor de la Apoptosis/metabolismo , Disulfuros/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Transporte de Proteínas
11.
EMBO Rep ; 23(8): e54825, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35699132

RESUMEN

The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the "core" redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.


Asunto(s)
Drosophila melanogaster , Complejo IV de Transporte de Electrones , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Mamíferos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteómica
12.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34548399

RESUMEN

Combining mass spectrometry-based chemical cross-linking and complexome profiling, we analyzed the interactome of heart mitochondria. We focused on complexes of oxidative phosphorylation and found that dimeric apoptosis-inducing factor 1 (AIFM1) forms a defined complex with ∼10% of monomeric cytochrome c oxidase (COX) but hardly interacts with respiratory chain supercomplexes. Multiple AIFM1 intercross-links engaging six different COX subunits provided structural restraints to build a detailed atomic model of the COX-AIFM12 complex (PDBDEV_00000092). An application of two complementary proteomic approaches thus provided unexpected insight into the macromolecular organization of the mitochondrial complexome. Our structural model excludes direct electron transfer between AIFM1 and COX. Notably, however, the binding site of cytochrome c remains accessible, allowing formation of a ternary complex. The discovery of the previously overlooked COX-AIFM12 complex and clues provided by the structural model hint at potential roles of AIFM1 in oxidative phosphorylation biogenesis and in programmed cell death.


Asunto(s)
Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/metabolismo , Apoptosis , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación Oxidativa , Animales , Bovinos , Transporte de Electrón , Conformación Proteica
14.
Genet Med ; 23(9): 1705-1714, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34140661

RESUMEN

PURPOSE: To investigate monoallelic CLPB variants. Pathogenic variants in many genes cause congenital neutropenia. While most patients exhibit isolated hematological involvement, biallelic CLPB variants underlie a neurological phenotype ranging from nonprogressive intellectual disability to prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, 3-methylglutaconic aciduria, and neutropenia. CLPB was recently shown to be a mitochondrial refoldase; however, the exact function remains elusive. METHODS: We investigated six unrelated probands from four countries in three continents, with neutropenia and a phenotype dominated by epilepsy, developmental issues, and 3-methylglutaconic aciduria with next-generation sequencing. RESULTS: In each individual, we identified one of four different de novo monoallelic missense variants in CLPB. We show that these variants disturb refoldase and to a lesser extent ATPase activity of CLPB in a dominant-negative manner. Complexome profiling in fibroblasts showed CLPB at very high molecular mass comigrating with the prohibitins. In control fibroblasts, HAX1 migrated predominantly as monomer while in patient samples multiple HAX1 peaks were observed at higher molecular masses comigrating with CLPB thus suggesting a longer-lasting interaction between CLPB and HAX1. CONCLUSION: Both biallelic as well as specific monoallelic CLPB variants result in a phenotypic spectrum centered around neurodevelopmental delay, seizures, and neutropenia presumably mediated via HAX1.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Errores Innatos del Metabolismo , Neutropenia , Proteínas Adaptadoras Transductoras de Señales , Humanos , Discapacidad Intelectual/genética , Neutropenia/genética
15.
Nat Commun ; 12(1): 3820, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155201

RESUMEN

Our current understanding of mitochondrial functioning is largely restricted to traditional model organisms, which only represent a fraction of eukaryotic diversity. The unusual mitochondrion of malaria parasites is a validated drug target but remains poorly understood. Here, we apply complexome profiling to map the inventory of protein complexes across the pathogenic asexual blood stages and the transmissible gametocyte stages of Plasmodium falciparum. We identify remarkably divergent composition and clade-specific additions of all respiratory chain complexes. Furthermore, we show that respiratory chain complex components and linked metabolic pathways are up to 40-fold more prevalent in gametocytes, while glycolytic enzymes are substantially reduced. Underlining this functional switch, we find that cristae are exclusively present in gametocytes. Leveraging these divergent properties and stage dynamics for drug development presents an attractive opportunity to discover novel classes of antimalarials and increase our repertoire of gametocytocidal drugs.


Asunto(s)
Estadios del Ciclo de Vida , Mitocondrias/metabolismo , Plasmodium falciparum/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/ultraestructura , Evolución Molecular , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Fosforilación Oxidativa , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura , Especificidad de la Especie
16.
Biochim Biophys Acta Bioenerg ; 1862(7): 148411, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33722514

RESUMEN

Complexome profiling is an emerging 'omics' approach that systematically interrogates the composition of protein complexes (the complexome) of a sample, by combining biochemical separation of native protein complexes with mass-spectrometry based quantitation proteomics. The resulting fractionation profiles hold comprehensive information on the abundance and composition of the complexome, and have a high potential for reuse by experimental and computational researchers. However, the lack of a central resource that provides access to these data, reported with adequate descriptions and an analysis tool, has limited their reuse. Therefore, we established the ComplexomE profiling DAta Resource (CEDAR, www3.cmbi.umcn.nl/cedar/), an openly accessible database for depositing and exploring mass spectrometry data from complexome profiling studies. Compatibility and reusability of the data is ensured by a standardized data and reporting format containing the "minimum information required for a complexome profiling experiment" (MIACE). The data can be accessed through a user-friendly web interface, as well as programmatically using the REST API portal. Additionally, all complexome profiles available on CEDAR can be inspected directly on the website with the profile viewer tool that allows the detection of correlated profiles and inference of potential complexes. In conclusion, CEDAR is a unique, growing and invaluable resource for the study of protein complex composition and dynamics across biological systems.


Asunto(s)
Bases de Datos Factuales , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , Programas Informáticos , Humanos , Proteoma/análisis
17.
EMBO J ; 40(4): e106174, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33459420

RESUMEN

Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.


Asunto(s)
Complemento C5/metabolismo , Complemento C6/metabolismo , Proteínas del Sistema Complemento/metabolismo , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Mitocondrias Cardíacas/metabolismo , Animales , Bovinos , Complemento C5/química , Complemento C6/química , Proteínas del Sistema Complemento/química
18.
Front Cell Dev Biol ; 9: 796128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096826

RESUMEN

Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.

19.
Biochim Biophys Acta Bioenerg ; 1862(1): 148308, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002447

RESUMEN

The anaerobic oxidation of methane is important for mitigating emissions of this potent greenhouse gas to the atmosphere and is mediated by anaerobic methanotrophic archaea. In a 'Candidatus Methanoperedens BLZ2' enrichment culture used in this study, methane is oxidized to CO2 with nitrate being the terminal electron acceptor of an anaerobic respiratory chain. Energy conservation mechanisms of anaerobic methanotrophs have mostly been studied at metagenomic level and hardly any protein data is available at this point. To close this gap, we used complexome profiling to investigate the presence and subunit composition of protein complexes involved in energy conservation processes. All enzyme complexes and their subunit composition involved in reverse methanogenesis were identified. The membrane-bound enzymes of the respiratory chain, such as F420H2:quinone oxidoreductase, membrane-bound heterodisulfide reductase, nitrate reductases and Rieske cytochrome bc1 complex were all detected. Additional or putative subunits such as an octaheme subunit as part of the Rieske cytochrome bc1 complex were discovered that will be interesting targets for future studies. Furthermore, several soluble proteins were identified, which are potentially involved in oxidation of reduced ferredoxin produced during reverse methanogenesis leading to formation of small organic molecules. Taken together these findings provide an updated, refined picture of the energy metabolism of the environmentally important group of anaerobic methanotrophic archaea.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/metabolismo , Metabolismo Energético , Proteínas Arqueales/química , Transporte de Electrón
20.
Microbiol Res ; 243: 126649, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33285428

RESUMEN

The unicellular, free-living, nonphotosynthetic chlorophycean alga Polytomella parva, closely related to Chlamydomonas reinhardtii and Volvox carteri, contains colorless, starch-storing plastids. The P. parva plastids lack all light-dependent processes but maintain crucial metabolic pathways. The colorless alga also lacks a plastid genome, meaning no transcription or translation should occur inside the organelle. Here, using an algal fraction enriched in plastids as well as publicly available transcriptome data, we provide a morphological and proteomic characterization of the P. parva plastid, ultimately identifying several plastid proteins, both by mass spectrometry and bioinformatic analyses. Data are available via ProteomeXchange with identifier PXD022051. Altogether these results led us to propose a plastid proteome for P. parva, i.e., a set of proteins that participate in carbohydrate metabolism; in the synthesis and degradation of starch, amino acids and lipids; in the biosynthesis of terpenoids and tetrapyrroles; in solute transport and protein translocation; and in redox homeostasis. This is the first detailed plastid proteome from a unicellular, free-living colorless alga.


Asunto(s)
Chlorophyta/genética , Chlorophyta/metabolismo , Genoma de Plastidios , Proteoma/genética , Aminoácidos/metabolismo , Chlorophyta/química , Espectrometría de Masas , Plastidios/química , Plastidios/genética , Plastidios/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...