Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 136(3): 277-290, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905462

RESUMEN

The formation of the Baja California Peninsula (BCP) has impacted the microevolutionary dynamics of different species in ways that depend on biological traits such as dispersal capacity. Plants with relatively low levels of vagility have exhibited high genetic divergence between the BCP and Continental mainland. Brahea armata (Arecaceae) is a palm species inhabiting the northern part of the BCP and Sonora; its distribution occurs in isolated oases of vegetation. We aimed to evaluate the influence of the formation of the BCP on the genetic structure of B. armata using nuclear microsatellites and chloroplast markers (cpDNA) to compare patterns of genetic diversity and structure with previous published studies. Because gene flow through seeds is usually more limited compared to pollen flow, we expect to find stronger genetic structure at (cpDNA) than at nuclear markers. Moreover, larger genetic structure might also be explained by the smaller effective population size of cpDNA. We analyzed six microsatellite markers and two cpDNA regions. The main results indicated high levels of genetic differentiation among isolated populations located in the BCP, while low genetic differentiation was found between southern populations of the BCP and Sonora, suggesting long distance gene flow. In contrast, chloroplast markers indicated high levels of genetic structure between BCP and Sonora populations, suggesting asymmetrical gene flow between pollen (measured by nuclear microsatellites) and seed (cpDNA markers). This study provides valuable information on genetic diversity of B. armata that can be relevant for conservation and management; and develops microsatellites markers that can be transferred to other Brahea species.


Asunto(s)
Arecaceae , Flujo Génico , México , ADN de Cloroplastos/genética , Estructuras Genéticas , Variación Genética , Repeticiones de Microsatélite
2.
Plants (Basel) ; 11(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079658

RESUMEN

Traditional agave spirits such as mezcal or tequila are produced all over Mexico using different species of Agave. Amongst them, A. angustifolia is the most popular given its agricultural extension. A. angustifolia is a wild species extensively distributed from North to Central America, and previous studies show that it is highly related to the tequila agave A. tequilana. In different regions of Mexico, A. angustifolia is cultivated under different types and levels of management, and although traditional producers identify several landraces, for the non-trained eye there are no perceivable differences. After interviews with producers from different localities in Jalisco, Mexico, we sampled A. angustifolia plants classified as different landraces, measured several morphological traits, and characterized their genetic differentiation and diversity at the genome-wide level. We included additional samples identified as A. tequilana and A. rhodacantha to evaluate their relationship with A. angustifolia. In contrast with previous studies, our pool of ca 20K high quality unlinked SNPs provided more information and helped us to distinguish different genetic groups that are congruent with the ethnobotanical landraces. We found no evidence to genetically delimitate A. tequilana, A. rhodacantha and A. angustifolia. Our large genome level dataset allows a better understanding of the genetic identity of important A. angustifolia traditional and autochthonous landraces.

3.
Front Plant Sci ; 11: 817, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625225

RESUMEN

Forestry systems in Mexico are examples of traditional management of land and biodiversity that integrates the use, conservation and restoration of forest elements. Current in situ management practices of Agave maximiliana in western Mexico include the tolerance of many forest elements, reintroduction of young Agave plants and germination of seeds. More intense forms of management include monocultures, which are agroindustrialized systems developed in more recent times and characterized by the establishment of high densities of A. maximiliana plants in deforested areas and abandoned agricultural lands. We compared monocultures, forestry systems and wild populations (i.e., non/slightly-exploited forests) in order to evaluate whether these practices have had an effect on intraspecific morphological and genetic variation and divergence. We also tested whether divergence has a positive relationship with environmental and geographic distance. We analyzed 16 phenotypic traits in 17 populations of A. maximiliana, and 14 populations were further examined by amplifying 9 SSR loci. We employed multivariate methods and analyses of variance in phenotypic and genetic traits to test whether clusters and the percentage of variation contained in the managed and wild categories can be identified. Tests of isolation by environment (IBE) and distance (IBD) were performed to detect the magnitude of divergence explained by climatic and geographic variables. We found that forestry systems are effective as reservoirs of morphological and genetic diversity, since they maintain levels similar to those of wild populations. Moreover, the monocultures showed similar levels, reflecting their recent emergence. While the species showed high morphological diversity (IMD = 0.638, SE ± 0.07), it had low to intermediate genetic diversity (A = 2.37, H E = 0.418). Similar morphological and genetic divergences were found among populations, but these were not correlated with each other in population pairs. Non-significant morphological differentiation was found among categories. Only IBE was significant in the genetic structure (ß = 0.32, p = 0.007), while neither IBE nor IBD was detected in the morphological differentiation. We discuss the implications of these results in the context of the weaknesses and strengths of A. maximiliana in the face of the socio-ecological changes predicted for the study area in the short term.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...