Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21394, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123594

RESUMEN

The cerebellum has demonstrated a critical role during adaptation in motor learning. However, the extent to which it can contribute to the skill acquisition of complex real-world tasks remains unclear. One particularly challenging application in terms of motor activities is robotic surgery, which requires surgeons to complete complex multidimensional visuomotor tasks through a remotely operated robot. Given the need for high skill proficiency and the lack of haptic feedback, there is a pressing need for understanding and improving skill development. We investigated the effect of cerebellar transcranial direct current stimulation applied during the execution of a robotic surgery training task. Study participants received either real or sham stimulation while performing a needle driving task in a virtual (simulated) and a real-world (actual surgical robot) setting. We found that cerebellar stimulation significantly improved performance compared to sham stimulation at fast (more demanding) execution speeds in both virtual and real-world training settings. Furthermore, participants that received cerebellar stimulation more effectively transferred the skills they acquired during virtual training to the real world. Our findings underline the potential of non-invasive brain stimulation to enhance skill learning and transfer in real-world relevant tasks and, more broadly, its potential for improving complex motor learning.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Destreza Motora/fisiología , Aprendizaje/fisiología , Cerebelo/fisiología
2.
Front Robot AI ; 8: 707704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901168

RESUMEN

Robots for minimally invasive surgery introduce many advantages, but still require the surgeon to alternatively control the surgical instruments and the endoscope. This work aims at providing autonomous navigation of the endoscope during a surgical procedure. The autonomous endoscope motion was based on kinematic tracking of the surgical instruments and integrated with the da Vinci Research Kit. A preclinical usability study was conducted by 10 urologists. They carried out an ex vivo orthotopic neobladder reconstruction twice, using both traditional and autonomous endoscope control. The usability of the system was tested by asking participants to fill standard system usability scales. Moreover, the effectiveness of the method was assessed by analyzing the total procedure time and the time spent with the instruments out of the field of view. The average system usability score overcame the threshold usually identified as the limit to assess good usability (average score = 73.25 > 68). The average total procedure time with the autonomous endoscope navigation was comparable with the classic control (p = 0.85 > 0.05), yet it significantly reduced the time out of the field of view (p = 0.022 < 0.05). Based on our findings, the autonomous endoscope improves the usability of the surgical system, and it has the potential to be an additional and customizable tool for the surgeon that can always take control of the endoscope or leave it to move autonomously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...