Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neuropsychologia ; : 108960, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032629

RESUMEN

Congenital amusia is a neurodevelopmental disorder characterized by deficits of music perception and production, which are related to altered pitch processing. The present study used a wide variety of tasks to test potential patterns of processing impairment in individuals with congenital amusia (N=18) in comparison to matched controls (N=19), notably classical pitch processing tests (i.e., pitch change detection, pitch direction of change identification, and pitch short-term memory tasks) together with tasks assessing other aspects of pitch-related auditory cognition, such as emotion recognition in speech, sound segregation in tone sequences, and speech-in-noise perception. Additional behavioral measures were also collected, including text reading/copying tests, visual control tasks, and a subjective assessment of hearing abilities. As expected, amusics' performance was impaired for the three pitch-specific tasks compared to controls. This deficit of pitch perception had a self-perceived impact on amusics' quality of hearing. Moreover, participants with amusia were impaired in emotion recognition in vowels compared to controls, but no group difference was observed for emotion recognition in sentences, replicating previous data. Despite pitch processing deficits, participants with amusia did not differ from controls in sound segregation and speech-in-noise perception. Text reading and visual control tests did not reveal any impairments in participants with amusia compared to controls. However, the copying test revealed more numerous eye-movements and a smaller memory span. These results allow us to refine the pattern of pitch processing and memory deficits in congenital amusia, thus contributing further to understand pitch-related auditory cognition. Together with previous reports suggesting a comorbidity between congenital amusia and dyslexia, the findings call for further investigation of language-related abilities in this disorder even in the absence of neurodevelopmental language disorder diagnosis.

2.
PLoS Biol ; 22(3): e3002512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442128

RESUMEN

It has been suggested that cross-frequency coupling in cortico-hippocampal networks enables the maintenance of multiple visuo-spatial items in working memory. However, whether this mechanism acts as a global neural code for memory retention across sensory modalities remains to be demonstrated. Intracranial EEG data were recorded while drug-resistant patients with epilepsy performed a delayed matched-to-sample task with tone sequences. We manipulated task difficulty by varying the memory load and the duration of the silent retention period between the to-be-compared sequences. We show that the strength of theta-gamma phase amplitude coupling in the superior temporal sulcus, the inferior frontal gyrus, the inferior temporal gyrus, and the hippocampus (i) supports the short-term retention of auditory sequences; (ii) decodes correct and incorrect memory trials as revealed by machine learning analysis; and (iii) is positively correlated with individual short-term memory performance. Specifically, we show that successful task performance is associated with consistent phase coupling in these regions across participants, with gamma bursts restricted to specific theta phase ranges corresponding to higher levels of neural excitability. These findings highlight the role of cortico-hippocampal activity in auditory short-term memory and expand our knowledge about the role of cross-frequency coupling as a global biological mechanism for information processing, integration, and memory in the human brain.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Humanos , Lóbulo Temporal , Encéfalo , Cafeína
3.
Hear Res ; 437: 108855, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572645

RESUMEN

Congenital amusia is a neuro-developmental disorder of music perception and production, with the observed deficits contrasting with the sophisticated music processing reported for the general population. Musical deficits within amusia have been hypothesized to arise from altered pitch processing, with impairments in pitch discrimination and, notably, short-term memory. We here review research investigating its behavioral and neural correlates, in particular the impairments at encoding, retention, and recollection of pitch information, as well as how these impairments extend to the processing of pitch cues in speech and emotion. The impairments have been related to altered brain responses in a distributed fronto-temporal network, which can be observed also at rest. Neuroimaging studies revealed changes in connectivity patterns within this network and beyond, shedding light on the brain dynamics underlying auditory cognition. Interestingly, some studies revealed spared implicit pitch processing in congenital amusia, showing the power of implicit cognition in the music domain. Building on these findings, together with audiovisual integration and other beneficial mechanisms, we outline perspectives for training and rehabilitation and the future directions of this research domain.


Asunto(s)
Corteza Auditiva , Trastornos de la Percepción Auditiva , Música , Humanos , Trastornos de la Percepción Auditiva/psicología , Discriminación de la Altura Tonal/fisiología , Memoria a Corto Plazo/fisiología , Música/psicología , Percepción de la Altura Tonal/fisiología
4.
Cogn Affect Behav Neurosci ; 23(4): 1210-1221, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36949277

RESUMEN

Music is better recognized when it is liked. Does this association remain evident when music perception and memory are severely impaired, as in congenital amusia? We tested 11 amusic and 11 matched control participants, asking whether liking of a musical excerpt influences subsequent recognition. In an initial exposure phase, participants-unaware that their recognition would be tested subsequently-listened to 24 musical excerpts and judged how much they liked each excerpt. In the test phase that followed, participants rated whether they recognized the previously heard excerpts, which were intermixed with an equal number of foils matched for mode, tempo, and musical genre. As expected, recognition was in general impaired for amusic participants compared with control participants. For both groups, however, recognition was better for excerpts that were liked, and the liking enhancement did not differ between groups. These results contribute to a growing body of research that examines the complex interplay between emotions and cognitive processes. More specifically, they extend previous findings related to amusics' impairments to a new memory paradigm and suggest that (1) amusic individuals are sensitive to an aesthetic and subjective dimension of the music-listening experience, and (2) emotions can support memory processes even in a population with impaired music perception and memory.


Asunto(s)
Trastornos de la Percepción Auditiva , Música , Humanos , Música/psicología , Percepción de la Altura Tonal , Estimulación Acústica/métodos , Trastornos de la Percepción Auditiva/psicología
5.
J Cogn Neurosci ; 35(5): 765-780, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802367

RESUMEN

Congenital amusia is a neurodevelopmental disorder characterized by difficulties in the perception and production of music, including the perception of consonance and dissonance, or the judgment of certain combinations of pitches as more pleasant than others. Two perceptual cues for dissonance are inharmonicity (the lack of a common fundamental frequency between components) and beating (amplitude fluctuations produced by close, interacting frequency components). Amusic individuals have previously been reported to be insensitive to inharmonicity, but to exhibit normal sensitivity to beats. In the present study, we measured adaptive discrimination thresholds in amusic participants and found elevated thresholds for both cues. We recorded EEG and measured the MMN in evoked potentials to consonance and dissonance deviants in an oddball paradigm. The amplitude of the MMN response was similar overall for amusic and control participants; however, in controls, there was a tendency toward larger MMNs for inharmonicity than for beating cues, whereas the opposite tendency was observed for the amusic participants. These findings suggest that initial encoding of consonance cues may be intact in amusia despite impaired behavioral performance, but that the relative weight of nonspectral (beating) cues may be increased for amusic individuals.


Asunto(s)
Señales (Psicología) , Música , Humanos , Estimulación Acústica , Encéfalo , Percepción , Percepción de la Altura Tonal/fisiología
6.
Child Neuropsychol ; 29(8): 1294-1340, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36606656

RESUMEN

Developmental dyslexia and congenital amusia have common characteristics. Yet, their possible association in some individuals has been addressed only scarcely. Recently, two converging studies reported a sizable comorbidity rate between these two neurodevelopmental disorders (Couvignou et al., Cognitive Neuropsychology 2019; Couvignou & Kolinsky, Neuropsychologia 2021). However, the reason for their association remains unclear. Here, we investigate the hypothesis of shared underlying impairments between dyslexia and amusia. Fifteen dyslexic children with amusia (DYS+A), 15 dyslexic children without amusia (DYS-A), and two groups of 25 typically developing children matched on either chronological age (CA) or reading level (RL) were assessed with a behavioral battery aiming to investigate phonological and pitch processing capacities at auditory memory, perceptual awareness, and attentional levels. Overall, our results suggest that poor auditory serial-order memory increases susceptibility to comorbidity between dyslexia and amusia and may play a role in the development of the comorbid phenotype. In contrast, the impairments observed in the DYS+A children for auditory item memory, perceptual awareness, and attention might be a consequence of their reduced reading experience combined with weaker musical skills. Comparing DYS+A and DYS-A children suggests that the latter are more resourceful and/or have more effective compensatory strategies, or that their phenotype results from a different developmental trajectory. We will discuss the relevance of these findings for delving into the etiology of these two developmental disorders and address their implications for future research and practice.

7.
Eur J Neurosci ; 56(5): 4583-4599, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35833941

RESUMEN

Many natural sounds have frequency spectra composed of integer multiples of a fundamental frequency. This property, known as harmonicity, plays an important role in auditory information processing. However, the extent to which harmonicity influences the processing of sound features beyond pitch is still unclear. This is interesting because harmonic sounds have lower information entropy than inharmonic sounds. According to predictive processing accounts of perception, this property could produce more salient neural responses due to the brain's weighting of sensory signals according to their uncertainty. In the present study, we used electroencephalography to investigate brain responses to harmonic and inharmonic sounds commonly occurring in music: Piano tones and hi-hat cymbal sounds. In a multifeature oddball paradigm, we measured mismatch negativity (MMN) and P3a responses to timbre, intensity, and location deviants in listeners with and without congenital amusia-an impairment of pitch processing. As hypothesized, we observed larger amplitudes and earlier latencies (for both MMN and P3a) in harmonic compared with inharmonic sounds. These harmonicity effects were modulated by sound feature. Moreover, the difference in P3a latency between harmonic and inharmonic sounds was larger for controls than amusics. We propose an explanation of these results based on predictive coding and discuss the relationship between harmonicity, information entropy, and precision weighting of prediction errors.


Asunto(s)
Percepción Auditiva , Música , Estimulación Acústica , Percepción Auditiva/fisiología , Encéfalo , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Percepción de la Altura Tonal/fisiología , Sonido
8.
Brain Cogn ; 161: 105881, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35675729

RESUMEN

Congenital amusia is a neurodevelopmental disorder of music processing, which includes impaired pitch memory, associated to abnormalities in the right fronto-temporal network. Previous research has shown that tonal structures (as defined by the Western musical system) improve short-term memory performance for short tone sequences (in comparison to atonal versions) in non-musician listeners, but the tonal structures only benefited response times in amusic individuals. We here tested the potential benefit of tonal structures for short-term memory with more complex musical material. Congenital amusics and their matched non-musician controls were required to indicate whether two excerpts were the same or different. Results confirmed impaired performance of amusic individuals in this short-term memory task. However, most importantly, both groups of participants showed better memory performance for tonal material than for atonal material. These results revealed that even amusics' impaired short-term memory for pitch shows classical characteristics of short-term memory, that is the mnemonic benefit of structure in the to-be-memorized material. The findings show that amusic individuals have acquired some implicit knowledge of regularities of their culture, allowing for implicit processing of tonal structures, which benefits to memory even for complex material.


Asunto(s)
Trastornos de la Percepción Auditiva , Música , Estimulación Acústica/métodos , Humanos , Trastornos de la Memoria , Memoria a Corto Plazo/fisiología , Percepción de la Altura Tonal/fisiología , Tiempo de Reacción
9.
Eur J Neurosci ; 55(5): 1215-1231, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35112420

RESUMEN

Attention operates through top-down and bottom-up processes, and a balance between these processes is crucial for daily tasks. Imperilling such balance could explain ageing-associated attentional problems such as exacerbated distractibility. In this study, we aimed to characterize this enhanced distractibility by investigating the impact of ageing upon event-related components associated with top-down and bottom-up attentional processes. MEG and EEG data were acquired from 14 older and 14 younger healthy adults while performing a task that conjointly evaluates top-down and bottom-up attention. Event-related components were analysed on sensor and source levels. In comparison with the younger group, the older mainly displayed (1) reduced target anticipation processes (reduced CMV), (2) increased early target processing (larger P50 but smaller N1) and (3) increased processing of early distracting sounds (larger N1 but reduced P3a), followed by a (4) prolonged reorientation towards the main task (larger RON). Taken together, our results suggest that the enhanced distractibility in ageing could stem from top-down deficits, in particular from reduced inhibitory and reorientation processes.


Asunto(s)
Envejecimiento , Electroencefalografía , Adulto , Humanos , Tiempo de Reacción
10.
Atten Percept Psychophys ; 84(3): 739-759, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35106682

RESUMEN

You are on the phone, walking down a street. This daily situation calls for selective attention, allowing you to ignore surrounding irrelevant sounds, while trying to encode in memory the relevant information from the phone. Attention and memory are indeed two cognitive functions that are interacting constantly. However, their interaction is not yet well characterized during sound-sequence encoding. We independently manipulated both selective attention and working memory in a delayed-matching-to-sample of two tone-series, played successively in one ear. During the first melody presentation (memory encoding), weakly or highly distracting melodies were played in the other ear. Detection of the difference between the two comparison melodies could be easy or difficult, requiring low- or high-precision encoding, i.e., low or high memory load. Sixteen non-musician and 16 musician participants performed this new task. As expected, both groups of participants were less accurate in the difficult memory task and in difficult-to-ignore distractor conditions. Importantly, an interaction between memory-task difficulty and distractor difficulty was found in both groups. Non-musicians presented less difference between easy and difficult-to-ignore distractors in the difficult than in the easy memory task. On the contrary, musicians, with better performance than non-musicians, showed a greater difference between easy and difficult-to-ignore distractors in the difficult than in the easy memory task. In a second experiment including trials without a distractor, we could show that these effects are in line with the cognitive load theory. Taken together, these results speak for shared cognitive resources between working memory and attention during sound-sequence encoding.


Asunto(s)
Atención , Memoria a Corto Plazo , Cognición , Humanos , Sonido
11.
J Sleep Res ; 31(5): e13557, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35102655

RESUMEN

Several factors influencing dream recall frequency (DRF) have been identified, but some remain poorly understood. One way to study DRF is to compare cognitive processes in low and high dream recallers (LR and HR). According to the arousal-retrieval model, long-term memory encoding of a dream requires wakefulness while its multisensory short-term memory is still alive. Previous studies showed contradictory results concerning short-term memory differences between LR and HR. It has also been found that extreme DRFs are associated with different electrophysiological traits related to attentional processes. However, to date, there is no evidence for attentional differences between LR and HR at the behavioural level. To further investigate attention and working memory in HR and LR, we used a newly-developed challenging paradigm called "MEMAT" (for MEMory and ATtention), which allows the study of selective attention and working memory interaction during memory encoding of non-verbal auditory stimuli. We manipulated the difficulties of the distractor to ignore and of the memory task. The performance of the two groups were not differentially impacted by working memory load. However, HR were slower and less accurate in the presence of a hard rather than easy to-ignore distractor, while LR were much less impacted by the distractor difficulty. Therefore, we show behavioural evidence towards less resistance to hard-to-ignore distractors in HR. Using a challenging task, we show for the first time, attentional differences between HR and LR at the behavioural level. The impact of auditory attention and working memory on dream recall is discussed.


Asunto(s)
Memoria a Corto Plazo , Recuerdo Mental , Atención/fisiología , Humanos , Memoria a Corto Plazo/fisiología , Recuerdo Mental/fisiología , Vigilia/fisiología
12.
Psychol Res ; 86(2): 421-442, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33881610

RESUMEN

Short-term memory has mostly been investigated with verbal or visuospatial stimuli and less so with other categories of stimuli. Moreover, the influence of sensory modality has been explored almost solely in the verbal domain. The present study compared visual and auditory short-term memory for different types of materials, aiming to understand whether sensory modality and material type can influence short-term memory performance. Furthermore, we aimed to assess if music expertise can modulate memory performance, as previous research has reported better auditory memory (and to some extent, visual memory), and better auditory contour recognition for musicians than non-musicians. To do so, we adapted the same recognition paradigm (delayed-matching to sample) across different types of stimuli. In each trial, participants (musicians and non-musicians) were presented with two sequences of events, separated by a silent delay, and had to indicate whether the two sequences were identical or different. The performance was compared for auditory and visual materials belonging to three different categories: (1) verbal (i.e., syllables); (2) nonverbal (i.e., that could not be easily denominated) with contour (based on loudness or luminance variations); and (3) nonverbal without contour (pink noise sequences or kanji letters sequences). Contour and no-contour conditions referred to whether the sequence can entail (or not) a contour (i.e., a pattern of up and down changes) based on non-pitch features. Results revealed a selective advantage of musicians for auditory no-contour stimuli and for contour stimuli (both visual and auditory), suggesting that musical expertise is associated with specific short-term memory advantages in domains close to the trained domain, also extending cross-modally when stimuli have contour information. Moreover, our results suggest a role of encoding strategies (i.e., how the material is represented mentally during the task) for short-term-memory performance.


Asunto(s)
Música , Estimulación Acústica/métodos , Percepción Auditiva , Cognición , Humanos , Memoria a Corto Plazo , Reconocimiento en Psicología
13.
Dev Sci ; 25(3): e13188, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34751481

RESUMEN

Developmental aspects of auditory cognition were investigated in 5-to-10-year-old children (n = 100). Musical and verbal short-term memory (STM) were assessed by means of delayed matching-to-sample tasks (DMST) (comparison of two four-item sequences separated by a silent retention delay), with two levels of difficulty. For musical and verbal materials, children's performance increased from 5 years to about 7 years of age, then remained stable up to 10 years of age, with performance remaining inferior to performance of young adults. Children and adults performed better with verbal material than with musical material. To investigate auditory cognition beyond STM, we assessed speech-in-noise perception with a four-alternative forced-choice task with two conditions of phonological difficulty and two levels of cocktail-party noise intensity. Partial correlations, factoring out the effect of age, showed a significant link between musical STM and speech-in-noise perception in the condition with increased noise intensity. Our findings reveal that auditory STM improves over development with a critical phase around 6-7 years of age, yet these abilities appear to be still immature at 10 years. Musical and verbal STM might in particular share procedural and serial order processes. Furthermore, musical STM and the ability to perceive relevant speech signals in cocktail-party noise might rely on shared cognitive resources, possibly related to pitch encoding. To the best of our knowledge, this is the first time that auditory STM is assessed with the same paradigm for musical and verbal material during childhood, providing perspectives regarding diagnosis and remediation in developmental learning disorders.


Asunto(s)
Música , Percepción del Habla , Percepción Auditiva , Niño , Preescolar , Cognición , Humanos , Memoria a Corto Plazo , Ruido , Adulto Joven
14.
J Neurosci ; 42(3): 474-486, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34819342

RESUMEN

Predictive coding accounts of brain functions profoundly influence current approaches to perceptual synthesis. However, a fundamental paradox has emerged, that may be very relevant for understanding hallucinations, psychosis, or cognitive inflexibility: in some situations, surprise or prediction error-related responses can decrease when predicted, and yet, they can increase when we know they are predictable. This paradox is resolved by recognizing that brain responses reflect precision-weighted prediction error. This presses us to disambiguate the contributions of precision and prediction error in electrophysiology. To meet this challenge for the first time, we appeal to a methodology that couples an original experimental paradigm with fine dynamic modeling. We examined brain responses in healthy human participants (N = 20; 10 female) to unexpected and expected surprising sounds, assuming that the latter yield a smaller prediction error but much more amplified by a larger precision weight. Importantly, addressing this modulation requires the modeling of trial-by-trial variations of brain responses, that we reconstructed within a fronto-temporal network by combining EEG and MEG. Our results reveal an adaptive learning of surprise with larger integration of past (relevant) information in the context of expected surprises. Within the auditory hierarchy, this adaptation was found tied down to specific connections and reveals in particular precision encoding through neuronal excitability. Strikingly, these fine processes are automated as sound sequences were unattended. These findings directly speak to applications in psychiatry, where specifically impaired precision weighting has been suggested to be at the heart of several conditions such as schizophrenia and autism.SIGNIFICANCE STATEMENT In perception as Bayesian inference and learning, context sensitivity expresses as the precision weighting of prediction errors. A subtle mechanism that is thought to lie at the heart of several psychiatric conditions. It is thus critical to identify its neurophysiological and computational underpinnings. We revisit the passive auditory oddball paradigm by manipulating sound predictability and use a twofold modeling approach to simultaneous EEG-MEG recordings: (1) trial-by-trial modeling of cortical responses reveals a context-sensitive perceptual learning process; (2) the dynamic causal modeling (DCM) of evoked responses uncovers the associated changes in synaptic efficacy. Predictability discloses a link between precision weighting and self-inhibition of superficial pyramidal (SP) cells, a result that paves the way to a fine description of healthy and pathologic perception.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados/fisiología , Aprendizaje/fisiología , Adolescente , Adulto , Teorema de Bayes , Electroencefalografía , Femenino , Humanos , Magnetoencefalografía , Masculino , Modelos Neurológicos , Adulto Joven
15.
J Clin Med ; 10(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068067

RESUMEN

In the case of hearing loss, cochlear implants (CI) allow for the restoration of hearing. Despite the advantages of CIs for speech perception, CI users still complain about their poor perception of their auditory environment. Aiming to assess non-verbal auditory perception in CI users, we developed five listening tests. These tests measure pitch change detection, pitch direction identification, pitch short-term memory, auditory stream segregation, and emotional prosody recognition, along with perceived intensity ratings. In order to test the potential benefit of visual cues for pitch processing, the three pitch tests included half of the trials with visual indications to perform the task. We tested 10 normal-hearing (NH) participants with material being presented as original and vocoded sounds, and 10 post-lingually deaf CI users. With the vocoded sounds, the NH participants had reduced scores for the detection of small pitch differences, and reduced emotion recognition and streaming abilities compared to the original sounds. Similarly, the CI users had deficits for small differences in the pitch change detection task and emotion recognition, as well as a decreased streaming capacity. Overall, this assessment allows for the rapid detection of specific patterns of non-verbal auditory perception deficits. The current findings also open new perspectives about how to enhance pitch perception capacities using visual cues.

16.
Brain Topogr ; 34(3): 384-401, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33606142

RESUMEN

A growing number of studies investigate brain anatomy in migraine using voxel- (VBM) and surface-based morphometry (SBM), as well as diffusion tensor imaging (DTI). The purpose of this article is to identify consistent patterns of anatomical alterations associated with migraine. First, 19 migraineurs without aura and 19 healthy participants were included in a brain imaging study. T1-weighted MRIs and DTI sequences were acquired and analyzed using VBM, SBM and tract-based spatial statistics. No significant alterations of gray matter (GM) volume, cortical thickness, cortical gyrification, sulcus depth and white-matter tract integrity could be observed. However, migraineurs displayed decreased white matter (WM) volume in the left superior longitudinal fasciculus. Second, a systematic review of the literature employing VBM, SBM and DTI was conducted to investigate brain anatomy in migraine. Meta-analysis was performed using Seed-based d Mapping via permutation of subject images (SDM-PSI) on GM volume, WM volume and cortical thickness data. Alterations of GM volume, WM volume, cortical thickness or white-matter tract integrity were reported in 72%, 50%, 56% and 33% of published studies respectively. Spatial distribution and direction of the disclosed effects were highly inconsistent across studies. The SDM-PSI analysis revealed neither significant decrease nor significant increase of GM volume, WM volume or cortical thickness in migraine. Overall there is to this day no strong evidence of specific brain anatomical alterations reliably associated to migraine. Possible explanations of this conflicting literature are discussed. Trial registration number: NCT02791997, registrated February 6th, 2015.


Asunto(s)
Trastornos Migrañosos , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Trastornos Migrañosos/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
17.
Front Hum Neurosci ; 15: 794654, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35221952

RESUMEN

Recent computational models of perception conceptualize auditory oddball responses as signatures of a (Bayesian) learning process, in line with the influential view of the mismatch negativity (MMN) as a prediction error signal. Novel MMN experimental paradigms have put an emphasis on neurophysiological effects of manipulating regularity and predictability in sound sequences. This raises the question of the contextual adaptation of the learning process itself, which on the computational side speaks to the mechanisms of gain-modulated (or precision-weighted) prediction error. In this study using electrocorticographic (ECoG) signals, we manipulated the predictability of oddball sound sequences with two objectives: (i) Uncovering the computational process underlying trial-by-trial variations of the cortical responses. The fluctuations between trials, generally ignored by approaches based on averaged evoked responses, should reflect the learning involved. We used a general linear model (GLM) and Bayesian Model Reduction (BMR) to assess the respective contributions of experimental manipulations and learning mechanisms under probabilistic assumptions. (ii) To validate and expand on previous findings regarding the effect of changes in predictability using simultaneous EEG-MEG recordings. Our trial-by-trial analysis revealed only a few stimulus-responsive sensors but the measured effects appear to be consistent over subjects in both time and space. In time, they occur at the typical latency of the MMN (between 100 and 250 ms post-stimulus). In space, we found a dissociation between time-independent effects in more anterior temporal locations and time-dependent (learning) effects in more posterior locations. However, we could not observe any clear and reliable effect of our manipulation of predictability modulation onto the above learning process. Overall, these findings clearly demonstrate the potential of trial-to-trial modeling to unravel perceptual learning processes and their neurophysiological counterparts.

18.
Neuroimage ; 226: 117468, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075561

RESUMEN

We here turn the general and theoretical question of the complementarity of EEG and MEG for source reconstruction, into a practical empirical one. Precisely, we address the challenge of evaluating multimodal data fusion on real data. For this purpose, we build on the flexibility of Parametric Empirical Bayes, namely for EEG-MEG data fusion, group level inference and formal hypothesis testing. The proposed approach follows a two-step procedure by first using unimodal or multimodal inference to derive a cortical solution at the group level; and second by using this solution as a prior model for single subject level inference based on either unimodal or multimodal data. Interestingly, for inference based on the same data (EEG, MEG or both), one can then formally compare, as alternative hypotheses, the relative plausibility of the two unimodal and the multimodal group priors. Using auditory data, we show that this approach enables to draw important conclusions, namely on (i) the superiority of multimodal inference, (ii) the greater spatial sensitivity of MEG compared to EEG, (iii) the ability of EEG data alone to source reconstruct temporal lobe activity, (iv) the usefulness of EEG to improve MEG based source reconstruction. Importantly, we largely reproduce those findings over two different experimental conditions. We here focused on Mismatch Negativity (MMN) responses for which generators have been extensively investigated with little homogeneity in the reported results. Our multimodal inference at the group level revealed spatio-temporal activity within the supratemporal plane with a precision which, to our knowledge, has never been achieved before with non-invasive recordings.


Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Magnetoencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Teorema de Bayes , Encéfalo/fisiología , Humanos , Modelos Neurológicos , Imagen Multimodal/métodos
19.
Cortex ; 130: 78-93, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32645502

RESUMEN

For the hemispheric laterality of emotion processing in the brain, two competing hypotheses are currently still debated. The first hypothesis suggests a greater involvement of the right hemisphere in emotion perception whereas the second hypothesis suggests different involvements of each hemisphere as a function of the valence of the emotion. These hypotheses are based on findings for facial and prosodic emotion perception. Investigating emotion perception for other stimuli, such as music, should provide further insight and potentially help to disentangle between these two hypotheses. The present study investigated musical emotion perception in patients with unilateral right brain damage (RBD, n = 16) or left brain damage (LBD, n = 16), as well as in matched healthy comparison participants (n = 28). The experimental task required explicit recognition of musical emotions as well as ratings on the perceived intensity of the emotion. Compared to matched comparison participants, musical emotion recognition was impaired only in LBD participants, suggesting a potential specificity of the left hemisphere for explicit emotion recognition in musical material. In contrast, intensity ratings of musical emotions revealed that RBD patients underestimated the intensity of negative emotions compared to positive emotions, while LBD patients and comparisons did not show this pattern. To control for a potential generalized emotion deficit for other types of stimuli, we also tested facial emotion recognition in the same patients and their matched healthy comparisons. This revealed that emotion recognition after brain damage might depend on the stimulus category or modality used. These results are in line with the hypothesis of a deficit of emotion perception depending on lesion laterality and valence in brain-damaged participants. The present findings provide critical information to disentangle the currently debated competing hypotheses and thus allow for a better characterization of the involvement of each hemisphere for explicit emotion recognition and their perceived intensity.


Asunto(s)
Música , Corteza Cerebral , Emociones , Expresión Facial , Lateralidad Funcional , Humanos , Reconocimiento en Psicología
20.
Clin Neurophysiol ; 131(8): 1933-1946, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32619799

RESUMEN

OBJECTIVES: To evaluate alterations of top-down and/or bottom-up attention in migraine and their cortical underpinnings. METHODS: 19 migraineurs between attacks and 19 matched control participants performed a task evaluating jointly top-down and bottom-up attention, using visually-cued target sounds and unexpected task-irrelevant distracting sounds. Behavioral responses and magneto- and electro-encephalography signals were recorded. Event-related potentials and fields were processed and source reconstruction was applied to event-related fields. RESULTS: At the behavioral level, neither top-down nor bottom-up attentional processes appeared to be altered in migraine. However, migraineurs presented heightened evoked responses following distracting sounds (orienting component of the N1 and Re-Orienting Negativity, RON) and following target sounds (orienting component of the N1), concomitant to an increased recruitment of the right temporo-parietal junction. They also displayed an increased effect of the cue informational value on target processing resulting in the elicitation of a negative difference (Nd). CONCLUSIONS: Migraineurs appear to display increased bottom-up orienting response to all incoming sounds, and an enhanced recruitment of top-down attention. SIGNIFICANCE: The interictal state in migraine is characterized by an exacerbation of the orienting response to attended and unattended sounds. These attentional alterations might participate to the peculiar vulnerability of the migraine brain to all incoming stimuli.


Asunto(s)
Atención , Percepción Auditiva , Potenciales Evocados Auditivos , Trastornos Migrañosos/fisiopatología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Lóbulo Parietal/fisiopatología , Lóbulo Temporal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA