Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 13(1): 7024, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411288

RESUMEN

Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.


Asunto(s)
Exposoma , Embarazo , Femenino , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Metaboloma , Transcriptoma
2.
Elife ; 112022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302492

RESUMEN

Background: The identification of expression quantitative trait methylation (eQTMs), defined as associations between DNA methylation levels and gene expression, might help the biological interpretation of epigenome-wide association studies (EWAS). We aimed to identify autosomal cis eQTMs in children's blood, using data from 832 children of the Human Early Life Exposome (HELIX) project. Methods: Blood DNA methylation and gene expression were measured with the Illumina 450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation levels and expression of nearby genes (1 Mb window centered at the transcription start site, TSS) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, cohort, and blood cell composition. Results: We identified 39,749 blood autosomal cis eQTMs, representing 21,966 unique CpGs (eCpGs, 5.7% of total CpGs) and 8,886 unique transcript clusters (eGenes, 15.3% of total transcript clusters, equivalent to genes). In 87.9% of these cis eQTMs, the eCpG was located at <250 kb from eGene's TSS; and 58.8% of all eQTMs showed an inverse relationship between the methylation and expression levels. Only around half of the autosomal cis-eQTMs eGenes could be captured through annotation of the eCpG to the closest gene. eCpGs had less measurement error and were enriched for active blood regulatory regions and for CpGs reported to be associated with environmental exposures or phenotypic traits. In 40.4% of the eQTMs, the CpG and the eGene were both associated with at least one genetic variant. The overlap of autosomal cis eQTMs in children's blood with those described in adults was small (13.8%), and age-shared cis eQTMs tended to be proximal to the TSS and enriched for genetic variants. Conclusions: This catalogue of autosomal cis eQTMs in children's blood can help the biological interpretation of EWAS findings and is publicly available at https://helixomics.isglobal.org/ and at Dryad (doi:10.5061/dryad.fxpnvx0t0). Funding: The study has received funding from the European Community's Seventh Framework Programme (FP7/2007-206) under grant agreement no 308333 (HELIX project); the H2020-EU.3.1.2. - Preventing Disease Programme under grant agreement no 874583 (ATHLETE project); from the European Union's Horizon 2020 research and innovation programme under grant agreement no 733206 (LIFECYCLE project), and from the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL and Instituto de Salud Carlos III) under the grant agreement no AC18/00006 (NutriPROGRAM project). The genotyping was supported by the projects PI17/01225 and PI17/01935, funded by the Instituto de Salud Carlos III and co-funded by European Union (ERDF, "A way to make Europe") and the Centro Nacional de Genotipado-CEGEN (PRB2-ISCIII). BiB received core infrastructure funding from the Wellcome Trust (WT101597MA) and a joint grant from the UK Medical Research Council (MRC) and Economic and Social Science Research Council (ESRC) (MR/N024397/1). INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; "Rhea Plus": Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15). We acknowledge support from the Spanish Ministry of Science and Innovation through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. MV-U and CR-A were supported by a FI fellowship from the Catalan Government (FI-DGR 2015 and #016FI_B 00272). MC received funding from Instituto Carlos III (Ministry of Economy and Competitiveness) (CD12/00563 and MS16/00128).


Cells can fine-tune which genes they activate, when and at which levels using a range of chemical marks on the DNA and certain proteins that help to organise the genome. One well-known example of such 'epigenetic tags' is DNA methylation, whereby a methyl group is added onto particular positions in the genome. Many factors ­ including environmental effects such as diet ­ control DNA methylation, allowing an organism to adapt to ever-changing conditions. An expression quantitative trait methylation (eQTM) is a specific position of the genome whose DNA methylation status regulates the activity of a given gene. A catalogue of eQTMs would be useful in helping to reveal how the environment and disease impacts the way cells work. Yet, currently, the relationships between most epigenetic tags and gene activity remains unclear, especially in children. To fill this gap, Ruiz-Arenas et al. studied DNA methylation in blood samples from over 800 healthy children across Europe. Amongst all tested DNA methylation sites, 22,000 (5.7% of total) were associated with the expression of a gene ­ and therefore were eQTMs; reciprocally, 9,000 genes (15.3% of all tested genes) were linked to at least one methylation site, leading to a total of 40,000 pairs of DNA methylation sites and genes. Most often, eQTMs regulated the expression of nearby genes ­ but only half controlled the gene that was the closest to them. Age and the genetic background of the individuals influenced the nature of eQTMs. This catalogue is a useful resource for the scientific community to start understanding the relationship between epigenetics and gene activity. Similar studies are now needed for other tissues and age ranges. Overall, extending our knowledge of eQTMs may help reveal how life events lead to illness, and could inform prevention efforts.


Asunto(s)
Metilación de ADN , Epigenoma , Adulto , Preescolar , Estudios de Cohortes , Europa (Continente) , Humanos , Fenotipo
3.
Environ Int ; 155: 106683, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34144479

RESUMEN

The early-life exposome influences future health and accelerated biological aging has been proposed as one of the underlying biological mechanisms. We investigated the association between more than 100 exposures assessed during pregnancy and in childhood (including indoor and outdoor air pollutants, built environment, green environments, tobacco smoking, lifestyle exposures, and biomarkers of chemical pollutants), and epigenetic age acceleration in 1,173 children aged 7 years old from the Human Early-Life Exposome project. Age acceleration was calculated based on Horvath's Skin and Blood clock using child blood DNA methylation measured by Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance (PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely associated with child body mass index) were protective for age acceleration. None of the associations remained significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood exposure to indoor PMabs may accelerate epigenetic aging from an early age.


Asunto(s)
Contaminantes Ambientales , Exposoma , Aceleración , Niño , Metilación de ADN , Exposición a Riesgos Ambientales , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Epigénesis Genética , Femenino , Humanos , Embarazo
4.
Environ Int ; 153: 106509, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33774494

RESUMEN

Challenges in the assessment of the health effects of the exposome, defined as encompassing all environmental exposures from the prenatal period onwards, include a possibly high rate of false positive signals. It might be overcome using data dimension reduction techniques. Data from the biological layers lying between the exposome and its possible health consequences, such as the methylome, may help reducing exposome dimension. We aimed to quantify the performances of approaches relying on the incorporation of an intermediary biological layer to relate the exposome and health, and compare them with agnostic approaches ignoring the intermediary layer. We performed a Monte-Carlo simulation, in which we generated realistic exposome and intermediary layer data by sampling with replacement real data from the Helix exposome project. We generated a Gaussian outcome assuming linear relationships between the three data layers, in 2381 scenarios under five different causal structures, including mediation and reverse causality. We tested 3 agnostic methods considering only the exposome and the health outcome: ExWAS (for Exposome-Wide Association study), DSA, LASSO; and 3 methods relying on an intermediary layer: two implementations of our new oriented Meet-in-the-Middle (oMITM) design, using ExWAS and DSA, and a mediation analysis using ExWAS. Methods' performances were assessed through their sensitivity and FDP (False-Discovery Proportion). The oMITM-based methods generally had lower FDP than the other approaches, possibly at a cost in terms of sensitivity; FDP was in particular lower under a structure of reverse causality and in some mediation scenarios. The oMITM-DSA implementation showed better performances than oMITM-ExWAS, especially in terms of FDP. Among the agnostic approaches, DSA showed the highest performance. Integrating information from intermediary biological layers can help lowering FDP in studies of the exposome health effects; in particular, oMITM seems less sensitive to reverse causality than agnostic exposome-health association studies.


Asunto(s)
Contaminantes Ambientales , Exposoma , Causalidad , Exposición a Riesgos Ambientales , Epigenoma , Femenino , Humanos , Embarazo
5.
Epidemiology ; 32(3): 402-411, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33652445

RESUMEN

BACKGROUND: Machine-learning algorithms are increasingly used in epidemiology to identify true predictors of a health outcome when many potential predictors are measured. However, these algorithms can provide different outputs when repeatedly applied to the same dataset, which can compromise research reproducibility. We aimed to illustrate that commonly used algorithms are unstable and, using the example of Least Absolute Shrinkage and Selection Operator (LASSO), that stabilization method choice is crucial. METHODS: In a simulation study, we tested the stability and performance of widely used machine-learning algorithms (LASSO, Elastic-Net, and Deletion-Substitution-Addition [DSA]). We then assessed the effectiveness of six methods to stabilize LASSO and their impact on performance. We assumed that a linear combination of factors drawn from a simulated set of 173 quantitative variables assessed in 1,301 subjects influenced to varying extents a continuous health outcome. We assessed model stability, sensitivity, and false discovery proportion. RESULTS: All tested algorithms were unstable. For LASSO, stabilization methods improved stability without ensuring perfect stability, a finding confirmed by application to an exposome study. Stabilization methods also affected performance. Specifically, stabilization based on hyperparameter optimization, frequently implemented in epidemiology, increased the false discovery proportion dramatically when predictors explained a low share of outcome variability. In contrast, stabilization based on stability selection procedure often decreased the false discovery proportion, while sometimes simultaneously lowering sensitivity. CONCLUSIONS: Machine-learning methods instability should concern epidemiologists relying on them for variable selection, as stabilizing a model can impact its performance. For LASSO, stabilization methods based on stability selection procedure (rather than addressing prediction stability) should be preferred to identify true predictors.


Asunto(s)
Algoritmos , Aprendizaje Automático , Simulación por Computador , Estudios Epidemiológicos , Humanos , Reproducibilidad de los Resultados
6.
Artículo en Inglés | MEDLINE | ID: mdl-33525356

RESUMEN

Asthma is a widespread respiratory disease caused by complex contribution from genetic, environmental and behavioral factors. For several decades, its sensitivity to environmental factors has been investigated in single exposure (or single family of exposures) studies, which might be a narrow approach to tackle the etiology of such a complex multifactorial disease. The emergence of the exposome concept, introduced by C. Wild (2005), offers an alternative to address exposure-health associations. After presenting an overview of the exposome concept, we discuss different statistical approaches used to study the exposome-health associations and review recent studies linking multiple families of exposures to asthma-related outcomes. The few studies published so far on the association between the exposome and asthma-related outcomes showed differences in terms of study design, population, exposome definition and statistical methods used, making their results difficult to compare. Regarding statistical methods, most studies applied successively univariate (Exposome-Wide Association Study (ExWAS)) and multivariate (adjusted for co-exposures) (e.g., Deletion-Substitution-Addition (DSA) algorithm) regression-based models. This latest approach makes it possible to assess associations between a large set of exposures and asthma outcomes. However, it cannot address complex interactions (i.e., of order ≥3) or mixture effects. Other approaches like cluster-based analyses, that lead to the identification of specific profiles of exposure at risk for the studied health-outcome, or mediation analyses, that allow the integration of information from intermediate biological layers, could offer a new avenue in the understanding of the environment-asthma association. European projects focusing on the exposome research have recently been launched and should provide new results to help fill the gap that currently exists in our understanding of the effect of environment on respiratory health.


Asunto(s)
Asma , Contaminantes Ambientales , Exposoma , Asma/epidemiología , Asma/etiología , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Estilo de Vida
7.
Hum Mol Genet ; 29(23): 3830-3844, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33283231

RESUMEN

Human metabolism is influenced by genetic and environmental factors. Previous studies have identified over 23 loci associated with more than 26 urine metabolites levels in adults, which are known as urinary metabolite quantitative trait loci (metabQTLs). The aim of the present study is the identification for the first time of urinary metabQTLs in children and their interaction with dietary patterns. Association between genome-wide genotyping data and 44 urine metabolite levels measured by proton nuclear magnetic resonance spectroscopy was tested in 996 children from the Human Early Life Exposome project. Twelve statistically significant urine metabQTLs were identified, involving 11 unique loci and 10 different metabolites. Comparison with previous findings in adults revealed that six metabQTLs were already known, and one had been described in serum and three were involved the same locus as other reported metabQTLs but had different urinary metabolites. The remaining two metabQTLs represent novel urine metabolite-locus associations, which are reported for the first time in this study [single nucleotide polymorphism (SNP) rs12575496 for taurine, and the missense SNP rs2274870 for 3-hydroxyisobutyrate]. Moreover, it was found that urinary taurine levels were affected by the combined action of genetic variation and dietary patterns of meat intake as well as by the interaction of this SNP with beverage intake dietary patterns. Overall, we identified 12 urinary metabQTLs in children, including two novel associations. While a substantial part of the identified loci affected urinary metabolite levels both in children and in adults, the metabQTL for taurine seemed to be specific to children and interacted with dietary patterns.


Asunto(s)
Dieta , Metaboloma , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Urinálisis/métodos , Niño , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino
8.
BMC Med ; 18(1): 243, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32811491

RESUMEN

BACKGROUND: The adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows. METHODS: We investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites. RESULTS: Maternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure. CONCLUSION: In this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to past exposures. Finally, certain metabolites and protein markers evidenced potential early biological effects of postnatal SHS, such as fibrinolysis.


Asunto(s)
Biomarcadores/sangre , Metilación de ADN/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Contaminación por Humo de Tabaco/efectos adversos , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo
9.
Environ Health Perspect ; 128(6): 67009, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579081

RESUMEN

BACKGROUND: Chemical and nonchemical environmental exposures are increasingly suspected to influence the development of obesity, especially during early life, but studies mostly consider single exposure groups. OBJECTIVES: Our study aimed to systematically assess the association between a wide array of early-life environmental exposures and childhood obesity, using an exposome-wide approach. METHODS: The HELIX (Human Early Life Exposome) study measured child body mass index (BMI), waist circumference, skinfold thickness, and body fat mass in 1,301 children from six European birth cohorts age 6-11 y. We estimated 77 prenatal exposures and 96 childhood exposures (cross-sectionally), including indoor and outdoor air pollutants, built environment, green spaces, tobacco smoking, and biomarkers of chemical pollutants (persistent organic pollutants, metals, phthalates, phenols, and pesticides). We used an exposure-wide association study (ExWAS) to screen all exposure-outcome associations independently and used the deletion-substitution-addition (DSA) variable selection algorithm to build a final multiexposure model. RESULTS: The prevalence of overweight and obesity combined was 28.8%. Maternal smoking was the only prenatal exposure variable associated with higher child BMI (z-score increase of 0.28, 95% confidence interval: 0.09, 0.48, for active vs. no smoking). For childhood exposures, the multiexposure model identified particulate and nitrogen dioxide air pollution inside the home, urine cotinine levels indicative of secondhand smoke exposure, and residence in more densely populated areas and in areas with fewer facilities to be associated with increased child BMI. Child blood levels of copper and cesium were associated with higher BMI, and levels of organochlorine pollutants, cobalt, and molybdenum were associated with lower BMI. Similar results were found for the other adiposity outcomes. DISCUSSION: This first comprehensive and systematic analysis of many suspected environmental obesogens strengthens evidence for an association of smoking, air pollution exposure, and characteristics of the built environment with childhood obesity risk. Cross-sectional biomarker results may suffer from reverse causality bias, whereby obesity status influenced the biomarker concentration. https://doi.org/10.1289/EHP5975.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Obesidad/epidemiología , Contaminantes Atmosféricos , Contaminación del Aire/estadística & datos numéricos , Índice de Masa Corporal , Niño , Contaminantes Ambientales , Exposoma , Femenino , Humanos , Masculino , Dióxido de Nitrógeno , Ácidos Ftálicos , Embarazo , Grosor de los Pliegues Cutáneos , Fumar/epidemiología , Circunferencia de la Cintura
10.
Environ Health Perspect ; 128(5): 55001, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32379489

RESUMEN

BACKGROUND: Mediation analysis is used in epidemiology to identify pathways through which exposures influence health. The advent of high-throughput (omics) technologies gives opportunities to perform mediation analysis with a high-dimension pool of covariates. OBJECTIVE: We aimed to highlight some biostatistical issues of this expanding field of high-dimension mediation. DISCUSSION: The mediation techniques used for a single mediator cannot be generalized in a straightforward manner to high-dimension mediation. Causal knowledge on the relation between covariates is required for mediation analysis, and it is expected to be more limited as dimension and system complexity increase. The methods developed in high dimension can be distinguished according to whether mediators are considered separately or as a whole. Methods considering each potential mediator separately do not allow efficient identification of the indirect effects when mutual influences exist among the mediators, which is expected for many biological (e.g., epigenetic) parameters. In this context, methods considering all potential mediators simultaneously, based, for example, on data reduction techniques, are more adapted to the causal inference framework. Their cost is a possible lack of ability to single out the causal mediators. Moreover, the ability of the mediators to predict the outcome can be overestimated, in particular because many machine-learning algorithms are optimized to increase predictive ability rather than their aptitude to make causal inference. Given the lack of overarching validated framework and the generally complex causal structure of high-dimension data, analysis of high-dimension mediation currently requires great caution and effort to incorporate a priori biological knowledge. https://doi.org/10.1289/EHP6240.


Asunto(s)
Análisis de Mediación , Humanos , Modelos Estadísticos
11.
Environ Int ; 138: 105622, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32179316

RESUMEN

BACKGROUND: The exposome is defined as encompassing all environmental exposures one undergoes from conception onwards. Challenges of the application of this concept to environmental-health association studies include a possibly high false-positive rate. OBJECTIVES: We aimed to reduce the dimension of the exposome using information from DNA methylation as a way to more efficiently characterize the relation between exposome and child body mass index (BMI). METHODS: Among 1,173 mother-child pairs from HELIX cohort, 216 exposures ("whole exposome") were characterized. BMI and DNA methylation from immune cells of peripheral blood were assessed in children at age 6-10 years. A priori reduction of the methylome to preselect BMI-relevant CpGs was performed using biological pathways. We then implemented a tailored Meet-in-the-Middle approach to identify from these CpGs candidate mediators in the exposome-BMI association, using univariate linear regression models corrected for multiple testing: this allowed to point out exposures most likely to be associated with BMI ("reduced exposome"). Associations of this reduced exposome with BMI were finally tested. The approach was compared to an agnostic exposome-wide association study (ExWAS) ignoring the methylome. RESULTS: Among the 2284 preselected CpGs (0.6% of the assessed CpGs), 62 were associated with BMI. Four factors (3 postnatal and 1 prenatal) of the exposome were associated with at least one of these CpGs, among which postnatal blood level of copper and PFOS were directly associated with BMI, with respectively positive and negative estimated effects. The agnostic ExWAS identified 18 additional postnatal exposures, including many persistent pollutants, generally unexpectedly associated with decreased BMI. DISCUSSION: Our approach incorporating a priori information identified fewer significant associations than an agnostic approach. We hypothesize that this smaller number corresponds to a higher specificity (and possibly lower sensitivity), compared to the agnostic approach. Indeed, the latter cannot distinguish causal relations from reverse causation, e.g. for persistent compounds stored in fat, whose circulating level is influenced by BMI.


Asunto(s)
Contaminantes Ambientales , Exposoma , Índice de Masa Corporal , Niño , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Epigenoma , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...