Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(2): 021802, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39073961

RESUMEN

The first results of the study of high-energy electron neutrino (ν_{e}) and muon neutrino (ν_{µ}) charged-current interactions in the FASERν emulsion-tungsten detector of the FASER experiment at the LHC are presented. A 128.8 kg subset of the FASERν volume was analyzed after exposure to 9.5 fb^{-1} of sqrt[s]=13.6 TeV pp data. Four (eight) ν_{e} (ν_{µ}) interaction candidate events are observed with a statistical significance of 5.2σ (5.7σ). This is the first direct observation of ν_{e} interactions at a particle collider and includes the highest-energy ν_{e} and ν_{µ} ever detected from an artificial source. The interaction cross section per nucleon σ/E_{ν} is measured over an energy range of 560-1740 GeV (520-1760 GeV) for ν_{e} (ν_{µ}) to be (1.2_{-0.7}^{+0.8})×10^{-38} cm^{2} GeV^{-1} [(0.5±0.2)×10^{-38} cm^{2} GeV^{-1}], consistent with standard model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges.

2.
Phys Rev Lett ; 131(3): 031801, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540863

RESUMEN

We report the first direct observation of neutrino interactions at a particle collider experiment. Neutrino candidate events are identified in a 13.6 TeV center-of-mass energy pp collision dataset of 35.4 fb^{-1} using the active electronic components of the FASER detector at the Large Hadron Collider. The candidates are required to have a track propagating through the entire length of the FASER detector and be consistent with a muon neutrino charged-current interaction. We infer 153_{-13}^{+12} neutrino interactions with a significance of 16 standard deviations above the background-only hypothesis. These events are consistent with the characteristics expected from neutrino interactions in terms of secondary particle production and spatial distribution, and they imply the observation of both neutrinos and anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.

3.
Langmuir ; 31(42): 11649-58, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26451684

RESUMEN

Different synthesis routes have been implemented to prepare macroporous monoliths with vinyl pendant groups and micrometric skeletons and through-pore sizes. A standard process combining the synthesis of a widely used (methyltrimethoxysilane/tetramethoxysilane) (MTMS/TMOS) hybrid silica monolith and the postsilanization with vinyltrimethoxysilane (VTMS) was used as reference material (Vgr-MTMS). An alternative "one-pot" procedure was used to obtain vinylized hybrid monoliths. Two VTMS/TMOS hybrid based monoliths were successfully prepared starting from 20% (w) and 80% (w/w) of VTMS, respectively, called 20-VTMS and 80-VTMS. Monoliths were characterized by SEM, nitrogen-adsorption isotherm, and (29)Si MAS NMR spectroscopy. One-pot synthesis allowed to obtain higher vinyl contents (15.9 and 61.5 mol % of Si atoms bonded to vinyl groups respectively for 20-VTMS and 80-VTMS) than for the postgrafted one (7.1%). Accessibility of vinyl groups was determined by the extent of bromination reactions followed by FTIR-ATR spectroscopy. Bromination with reaction yields were higher than 80% for all materials (80%, 85%, and 100% for 80-VTMS, 20-VTMS, and Vgr-MTMS respectively), with no diffusion issues The chemical reactivity of the pendant vinyl groups was investigated through radical-mediated thiol-ene reaction and radical-initiated bisulfite addition. Reaction yields for the two VTMS hybrid monoliths were quite lower (4-6%) than those obtained (about 50%) for the Vgr-MTMS monolith. The difference in reactivity was attributed to the steric hindrance of the vinyl moieties at the surface of hybrid materials. However, the lower reactivity of vinyl groups is compensated by their considerably higher surface density. Thus, hybrid monoliths are advantageous over their grafted counterparts, due to their higher hydrolytic stability and to the greater simplicity of the one-pot process. A chromatographic application exemplifies their interest and performances in separation science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA