Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Space Sci Rev ; 218(1): 3, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153338

RESUMEN

EUSO-Balloon is a pathfinder for JEM-EUSO, the mission concept of a spaceborne observatory which is designed to observe Ultra-High Energy Cosmic Ray (UHECR)-induced Extensive Air Showers (EAS) by detecting their UltraViolet (UV) light tracks "from above." On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. After reaching a floating altitude of 38 km, EUSO-Balloon imaged the UV light in the wavelength range ∼290-500 nm for more than 5 hours using the key technologies of JEM-EUSO. The flight allowed a good understanding of the performance of the detector to be developed, giving insights into possible improvements to be applied to future missions. A detailed measurement of the photoelectron counts in different atmospheric and ground conditions was achieved. By means of the simulation of the instrument response and by assuming atmospheric models, the absolute intensity of diffuse light was estimated. The instrument detected hundreds of laser tracks with similar characteristics to EASs shot by a helicopter flying underneath. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. The reconstruction of the direction of the laser tracks was performed. In this work, a review of the main results obtained by EUSO-Balloon is presented as well as implications for future space-based observations of UHECRs.

2.
Phys Rev Lett ; 116(24): 241105, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367381

RESUMEN

Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration, and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) until the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.

3.
Phys Rev Lett ; 115(11): 111101, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26406816

RESUMEN

In this work we present results of a direct search for strange quark matter (SQM) in cosmic rays with the PAMELA space spectrometer. If this state of matter exists it may be present in cosmic rays as particles, called strangelets, having a high density and an anomalously high mass-to-charge (A/Z) ratio. A direct search in space is complementary to those from ground-based spectrometers. Furthermore, it has the advantage of being potentially capable of directly identifying these particles, without any assumption on their interaction model with Earth's atmosphere and the long-term stability in terrestrial and lunar rocks. In the rigidity range from 1.0 to ∼1.0×10^{3} GV, no such particles were found in the data collected by PAMELA between 2006 and 2009. An upper limit on the strangelet flux in cosmic rays was therefore set for particles with charge 1≤Z≤8 and mass 4≤A≤1.2×10^{5}. This limit as a function of mass and as a function of magnetic rigidity allows us to constrain models of SQM production and propagation in the Galaxy.

4.
Phys Rev Lett ; 111(8): 081102, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010424

RESUMEN

Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009, approximately 24,500 positrons were observed. The results cannot be easily reconciled with purely secondary production, and additional sources of either astrophysical or exotic origin may be required.

5.
Phys Rev Lett ; 111(1): 012001, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23862993

RESUMEN

The TOTEM collaboration has measured the proton-proton total cross section at √s=8 TeV using a luminosity-independent method. In LHC fills with dedicated beam optics, the Roman pots have been inserted very close to the beam allowing the detection of ~90% of the nuclear elastic scattering events. Simultaneously the inelastic scattering rate has been measured by the T1 and T2 telescopes. By applying the optical theorem, the total proton-proton cross section of (101.7±2.9) mb has been determined, well in agreement with the extrapolation from lower energies. This method also allows one to derive the luminosity-independent elastic and inelastic cross sections: σ(el)=(27.1±1.4) mb; σ(inel)=(74.7±1.7) mb.

6.
Phys Rev Lett ; 111(26): 262001, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24483791

RESUMEN

The first double diffractive cross-section measurement in the very forward region has been carried out by the TOTEM experiment at the LHC with a center-of-mass energy of sqrt[s]=7 TeV. By utilizing the very forward TOTEM tracking detectors T1 and T2, which extend up to |η|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we determined the cross section σDD=(116±25) µb for events where both diffractive systems have 4.7<|η|min<6.5.

7.
Phys Rev Lett ; 106(20): 201101, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21668214

RESUMEN

Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray e⁻ have been identified above 50 GeV. The electron spectrum can be described with a single power-law energy dependence with spectral index -3.18 ± 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.

8.
Science ; 332(6025): 69-72, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385721

RESUMEN

Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 1.2 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics). We find that the spectral shapes of these two species are different and cannot be described well by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.

9.
Phys Rev Lett ; 105(12): 121101, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20867623

RESUMEN

The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.

10.
Nature ; 458(7238): 607-9, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19340076

RESUMEN

Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be 'primary sources'. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

11.
Phys Rev Lett ; 102(5): 051101, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19257498

RESUMEN

A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.

12.
Astrophys J ; 534(2): L177-L180, 2000 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-10813676

RESUMEN

We report new results for the cosmic-ray antiproton-to-proton ratio from 3 to 50 GeV at the top of the atmosphere. These results represent the first measurements, on an event-by-event basis, of mass-resolved antiprotons above 18 GeV. The results were obtained with the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas-RICH (Ring-Imaging Cerenkov) counter and a silicon-tungsten imaging calorimeter. The RICH detector was the first ever flown that is capable of identifying charge-one particles at energies above 5 GeV. The spectrometer was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The measured p&d1;/p ratio is in agreement with a pure secondary interstellar production.

19.
J Neurochem ; 59(2): 487-91, 1992 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-1629722

RESUMEN

The cholesterol, phospholipid, and fatty acid compositions in synaptic and nonsynaptic mitochondria from rat brains and the effect of aging were studied. Both cholesterol and phospholipid contents were found to be significantly different in synaptic compared to nonsynaptic mitochondria. In both types of brain mitochondria, aging decreases the cholesterol content by 27% and the phospholipid content by approximately 12%. The difference between these decreases observed in the organelles causes decreases in the cholesterol/phospholipid molar ratios for synaptic and nonsynaptic mitochondria of 17 and 19%, respectively. Also, the phospholipid composition is significantly different in synaptic compared to nonsynaptic mitochondria. Among phospholipids, only the cardiolipin fraction showed a significant decrease (26%) in nonsynaptic mitochondria from the brains of aged rats. Instead, the fatty acid composition was not significantly different in synaptic compared to nonsynaptic mitochondria. The 21% aging decrease in linoleic acid (18:2), observed only in nonsynaptic mitochondria, may be related to a decrease in cardiolipin, which contains a large amount of this fatty acid.


Asunto(s)
Envejecimiento/metabolismo , Química Encefálica , Encéfalo/ultraestructura , Lípidos/análisis , Mitocondrias/química , Sinapsis/ultraestructura , Animales , Colesterol/análisis , Colesterol/metabolismo , Cromatografía Líquida de Alta Presión , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Masculino , Mitocondrias/metabolismo , Fosfolípidos/análisis , Fosfolípidos/metabolismo , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...