Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771927

RESUMEN

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.

2.
Adv Sci (Weinh) ; 11(18): e2307448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447160

RESUMEN

The synthesis of a family of chiral and enantiomerically pure pyridyl-diamide (pda) ligands that upon complexation with europium [Eu(CF3SO3)3] result in chiral complexes with metal centered luminescence is reported; the sets of enantiomers giving rise to both circular dichroism (CD) and circularly polarized luminescence (CPL) signatures. The solid-state structures of these chiral metallosupramolecular systems are determined using X-ray diffraction showing that the ligand chirality is transferred from solution to the solid state. This optically favorable helical packing arrangement is confirmed by recording the CPL spectra from the crystalline assembly by using steady state and enantioselective differential chiral contrast (EDCC) CPL Laser Scanning Confocal Microscopy (CPL-LSCM) where the two enantiomers can be clearly distinguished.

3.
ACS Omega ; 9(6): 7262-7268, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371851

RESUMEN

Amorphous transparent conducting oxides (a-TCOs) have seen substantial interest in recent years due to the significant benefits that they can bring to transparent electronic devices. One such material of promise is amorphous ZnxSn1-xOy (a-ZTO). a-ZTO possesses many attractive properties for a TCO such as high transparency in the visible range, tunable charge carrier concentration, electron mobility, and only being composed of common and abundant elements. In this work, we employ a combination of UV-vis spectrophotometry, X-ray photoemission spectroscopy, and in situ scanning tunneling spectroscopy to investigate a 0.33 eV blue shift in the optical bandgap of a-ZTO, which we conclude to be due to quantum confinement effects.

4.
Sci Rep ; 14(1): 1928, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253799

RESUMEN

High-quality epitaxial p-type V2O3 thin films have been synthesized by spray pyrolysis. The films exhibited excellent electrical performance, with measurable mobility and high carrier concentration. The conductivity of the films varied between 115 and 1079 Scm-1 while the optical transparency of the films ranged from 32 to 65% in the visible region. The observed limitations in thinner films' mobility were attributed to the nanosized granular structure and the presence of two preferred growth orientations. The 60 nm thick V2O3 film demonstrated a highly competitive transparency-conductivity figure of merit compared to the state-of-the-art.

5.
Chem Mater ; 34(7): 3020-3027, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35431441

RESUMEN

Oxide semiconductors are penetrating into a wide range of energy, environmental, and electronic applications, possessing a potential to outrun currently employed semiconductors. However, an insufficient development of p-type oxides is a major obstacle against complete oxide electronics. Quite often oxide deposition is performed by the spray pyrolysis method, inexpensive to implement and therefore accessible to a large number of laboratories. Although, the complex growth chemistry and a lack of in situ monitoring during the synthesis process can complicate the growth optimization of multicomponent oxides. Here we present a concept of plasmonic, optical sensing that has been applied to spray pyrolysis oxide film growth monitoring for the first time. The proposed method utilizes a polarization based refractive index sensing platform using Au nanodimers as transducing elements. As a proof of concept, the changes in the refractive index of the grown film were extracted from individual Cu(acac)2 and Cr(acac)3 precursors in real time to reveal their thermal decomposition processes. Obtained activation energies give insight into the physical origin of the narrow temperature window for the synthesis of high performing p-type transparent conducting copper chromium oxide Cu x CrO2. The versatility of the proposed method makes it effective in the growth rate monitoring of various oxides, exploring new candidate materials and optimizing the synthesis conditions for acquisition of high performing oxides synthesized by a high throughput cost-effective method.

6.
Mater Sci Eng C Mater Biol Appl ; 128: 112340, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474890

RESUMEN

Mechanical robustness is an essential consideration in the development of hydrogel platforms for bone regeneration, and despite significant advances in the field of injectable hydrogels, many fail in this regard. Inspired by the mechanical properties of carboxylated single wall carbon nanotubes (COOH-SWCNTs) and the biological advantages of natural polymers, COOH-SWCNTs were integrated into chitosan and collagen to formulate mechanically robust, injectable and thermoresponsive hydrogels with interconnected molecular structure for load-bearing applications. This study presents a complete characterisation of the structural and biological properties, and mechanism of gelation of these novel formulated hydrogels. Results demonstrate that ß-glycerophosphate (ß-GP) and temperature play important roles in attaining gelation at physiological conditions, and the integration with COOH-SWCNTs significantly changed the structural morphology of the hydrogels to a more porous and aligned network. This led to a crystalline structure and significantly increased the mechanical strength of the hydrogels from kPa to MPa, which is closer to the mechanical strength of the bone. Moreover, increased osteoblast proliferation and rapid adsorption of hydroxyapatite on the surface of the hydrogels indicates increased bioactivity with addition of COOH-SWCNTs. Therefore, these nano-engineered hydrogels are expected to have wide utility in the area of bone tissue engineering and regenerative medicine.


Asunto(s)
Quitosano , Nanotubos de Carbono , Colágeno , Hidrogeles , Ingeniería de Tejidos
7.
ACS Appl Mater Interfaces ; 12(41): 46892-46899, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32955846

RESUMEN

Transparent conductive oxides (TCOs) are important materials for a wide range of optoelectronic devices. Amorphous zinc tin oxide (a-ZTO) is a TCO and one of the best nontoxic, low-cost replacements for more expensive amorphous indium-gallium-zinc oxide. Here, we employ spray pyrolysis (SP), an inexpensive and versatile chemical vapor deposition-based technique, to synthesize a-ZTO with an as-deposited conductivity of ≈300 S/cm-the highest value hitherto among the reported solution-processed films. Compositional analysis via X-ray photoelectron spectroscopy reveals a nonstoichiometric transfer of Zn and Sn from the dissolved precursors into the film, with the best electrical properties achieved at a film composition of xfilm = 0.38 ± 0.04 ((ZnO)x(SnO2)1-x (0 < x < 1)). The morphology of these films is compared to films synthesized by physical vapor deposition (PVD), and a strong correlation between morphology and electrical properties is revealed. The granular nature of the SP-grown films, which seems like a drawback at first glance, brings about the prospect of using a-ZTO in ink-jet-printed films from a nanoparticle suspension for the room-temperature deposition. Brief post-anneal cycles in N2 gas improve the conductivity of the films by means of grain boundary (GB) passivation.

8.
Materials (Basel) ; 13(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936137

RESUMEN

The electronic and optical properties of transparent conducting oxides (TCOs) are closely linked to their crystallographic structure on a macroscopic (grain sizes) and microscopic (bond structure) level. With the increasing drive towards using reduced film thicknesses in devices and growing interest in amorphous TCOs such as n-type InGaZnO 4 (IGZO), ZnSnO 3 (ZTO), p-type Cu x CrO 2 , or ZnRh 2 O 4 , the task of gaining in-depth knowledge on their crystal structure by conventional X-ray diffraction-based measurements are becoming increasingly difficult. We demonstrate the use of a focal shift based background subtraction technique for Raman spectroscopy specifically developed for the case of transparent thin films on amorphous substrates. Using this technique we demonstrate, for a variety of TCOs CuO, a-ZTO, ZnO:Al), how changes in local vibrational modes reflect changes in the composition of the TCO and consequently their electronic properties.

9.
ACS Appl Mater Interfaces ; 11(47): 44399-44405, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31638369

RESUMEN

In this report, reactive and nonreactive sputtering of amorphous ZnSnOy (a-ZnSnOy) was investigated, and extensive composition maps have been measured by X-ray photoelectron spectroscopy. The comprehensive analysis of the ((ZnO)x(SnO2)1-x) composition reveals that the best Zn/Sn ratio for high conductivity of the material can vary depending on the deposition technique utilized. Best conductivities of 225 S/cm were found to occur at x = 0.32 for reactive sputtering of a Sn target and x = 0.27 for nonreactive sputtering of a SnO2 target. These values correspond to unstable polymorphs of a-ZnSnOy, ZnSn2O5, and ZnSn3O7. Distinct local bonding arrangements have been confirmed by Raman spectroscopy.

10.
Materials (Basel) ; 10(9)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862695

RESUMEN

Screening for potential new materials with experimental and theoretical methods has led to the discovery of many promising candidate materials for p-type transparent conducting oxides. It is difficult to reliably assess a good p-type transparent conducting oxide (TCO) from limited information available at an early experimental stage. In this paper we discuss the influence of sample thickness on simple transmission measurements and how the sample thickness can skew the commonly used figure of merit of TCOs and their estimated band gap. We discuss this using copper-deficient CuCrO 2 as an example, as it was already shown to be a good p-type TCO grown at low temperatures. We outline a modified figure of merit reducing thickness-dependent errors, as well as how modern ab initio screening methods can be used to augment experimental methods to assess new materials for potential applications as p-type TCOs, p-channel transparent thin film transistors, and selective contacts in solar cells.

11.
Sci Rep ; 6: 33006, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27623228

RESUMEN

We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.

12.
Chem Soc Rev ; 45(11): 3244-74, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27137947

RESUMEN

Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.

13.
Dalton Trans ; 43(48): 17964-70, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-25374328

RESUMEN

The luminescent dimeric ternary lanthanide­cyclen complexes (2-(Ln.1)2; Ln = Tb/Eu) were designed and both their self-assembly formation and their ability to detect anions via displacement assays were investigated using spectrophotometric titrations in MeOH solution. The formation of 2-(Tb.1)2 and 2-(Eu.1)2 was investigated in solution, and determination of the binding constants and stoichiometry showed that the former was formed almost exclusively over the 1:1 complex 2-(Tb.1) after the addition of two equivalents of 2; while for 2-(Eu.1)2 a mixture of both stoichiometries existed even after the addition of four equivalents of 2. Of these two systems, 2-(Tb.1)2 was studied in details as a probe for anions, where significant changes where observed in the photophysical properties of the complex; with the characteristic Tb(III)-centred emission being fully switched off upon the sensing of phosphates and nitrate, giving rise to the formation of a H2PO4(-):Tb.1 complex in a 1:2 stoichiometry upon sensing of H2PO4(-) by 2-(Tb.1)2, while NO3(-) gave 1:1 complex formation and two equivalents of NO3(-)·Tb.1.


Asunto(s)
Complejos de Coordinación/química , Compuestos Heterocíclicos/química , Nitratos/análisis , Fosfatos/análisis , Espectrometría de Fluorescencia , Terbio/química , Aniones/química , Complejos de Coordinación/síntesis química , Ciclamas , Dimerización , Elementos de la Serie de los Lantanoides/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...