Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Neurosci ; 44(6): 603-614, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36162387

RESUMEN

Maternal stress during pregnancy results in increased risk of developing psychiatric disorders in the offspring including anxiety, depression, schizophrenia, and autism. However, the mechanisms underlying this disease susceptibility remain largely to be determined. In this study, the involvement of the serotonin (5-HT) and kynurenine (KYN) pathways of tryptophan metabolism on the behavioral deficits induced by maternal stress during the late phase of gestation in mice was investigated. Adult offspring born to control or restraint-stressed dams were exposed to the elevated plus-maze and tail suspension tests. Metabolites of the KYN and 5-HT pathways were measured in the hippocampus and brainstem by ultra-performance liquid chromatography tandem mass spectrometry. Female, but not male, prenatally stressed (PNS) offspring displayed a depressive-like phenotype, mainly when in proestrus/diestrus, along with reduced hippocampal 5-HT levels and high 5-HT turnover rate in the hippocampus and brainstem. In contrast, male PNS mice showed enhanced anxiety-like behaviors and higher hippocampal and brainstem quinolinic acid levels compared to male offspring born to nonstressed dams. These results indicate that maternal stress affects the behavior and brain metabolism of tryptophan in the offspring in a sex-dependent manner and suggest that alterations in both the 5-HT and KYN pathways may underlie the emotional dysfunctions observed in individuals exposed to stress during in utero development.


Asunto(s)
Quinurenina , Triptófano , Embarazo , Ratones , Animales , Femenino , Quinurenina/metabolismo , Triptófano/metabolismo , Serotonina/metabolismo , Ansiedad/metabolismo , Conducta Animal
2.
Acta Neuropsychiatr ; : 1-6, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31992385

RESUMEN

OBJECTIVE: Accumulating evidence from preclinical and clinical studies indicates that prenatal exposure to stress impairs the development of the offspring brain and facilitates the emergence of mental illness. This study aims to describe the impact of prenatal restraint stress on cognition and exploration to an unfamiliar environment at adulthood in an outbred strain of mice. METHODS: Late pregnant mice were exposed to restraint stress and adult offspring (60 days of age) behaviours were assessed in the object recognition task and open field test. FINDINGS: Prenatal stress (PNS) impaired new object recognition in male and female mice. Importantly, the learning deficits in female PNS mice were linked to their estrous cycle. Actually, PNS females in metestrus/diestrus but not in proestrus/estrus phases displayed recognition deficits compared to controls. Concerning locomotion in an unfamiliar environment, male but not female PNS mice displayed significant increase, but showed no differences in the distance travelled within the centre zone of the arena. CONCLUSION: Present findings support the view that maternal restraint-stress during late pregnancy impairs recognition memory in both male and female offspring, and in females, this cognitive deficit is dependent on the estrous cycle phase. Ultimately, these data reinforce that PNS is an aetiological component of psychiatric disorders associated with memory deficits.

3.
Exp Clin Psychopharmacol ; 27(5): 433-442, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30714753

RESUMEN

Major depression can be triggered by stressful events that promote deregulation of the hypothalamic-pituitary-adrenal axis response and, in some circumstances, persistent elevation of circulating glucocorticoid levels. Animal models are widely used to investigate the mechanisms responsible for the etiology and treatment of major depression. However, to mimic the dysfunction of the hypothalamic-pituitary-adrenal axis in rodents, animals should be exposed to sustained physical and psychological stressful situations. These animal models of depression are labor intensive and impact individual animals differently. Aiming to add evidence for a new acute neuroendocrine model of depression, male and female mice were treated with a single administration of dexamethasone, and behavioral effects were evaluated in the presence and absence of the antidepressants nortriptyline and venlafaxine. Male and female Swiss mice were treated with dexamethasone (0.07 mg/kg, subcutaneously) and the mouse behavior was assessed in the tail suspension and open field tests at 4 h, 24 h, and 7 days after administration. Dexamethasone induced depressogenic-like states in both sexes at 4 and 24 h after injection. Additionally, acute dexamethasone increased latency to body fur licking, thus corroborating the depressive-like behavior. The treatment with nortriptyline and venlafaxine (both at 30 mg/kg, intraperitoneally) blocked dexamethasone-induced increase in the immobility time and the latency to self-care. In conclusion, the present findings suggest that a single administration of dexamethasone induces depressive-like states in male and female mice, and these behavioral alterations are counteracted by conventional antidepressants. Ultimately, these data provide new evidence for an acute neuroendocrine model of depression. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Depresión/tratamiento farmacológico , Dexametasona/farmacología , Nortriptilina/uso terapéutico , Clorhidrato de Venlafaxina/uso terapéutico , Animales , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Depresión/inducido químicamente , Femenino , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/efectos de los fármacos
4.
Front Aging Neurosci ; 9: 198, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28676755

RESUMEN

Genetic susceptibility contributes to the etiology of sporadic Parkinson's Disease (PD) and worldwide studies have found positive associations of polymorphisms in the alpha-synuclein gene (SNCA) with the risk for PD. However, little is known about the influence of variants of SNCA in individual traits or phenotypical aspects of PD. Further, there is a lack of studies with Latin-American samples. We evaluated the association between SNCA single nucleotide polymorphisms (single nucleotide polymorphisms, SNPs - rs2583988, rs356219, rs2736990, and rs11931074) and PD risk in a Brazilians sample. In addition, we investigated their potential interactions with environmental factors and specific clinical outcomes (motor and cognitive impairments, depression, and anxiety). A total of 105 PD patients and 101 controls participated in the study. Single locus analysis showed that the risk allele of all SNPs were more frequent in PD patients (p < 0.05), and the associations of SNPs rs2583988, rs356219, and rs2736990 with increased PD risk were confirmed. Further, the G-rs356219 and C-rs2736990 alleles were associated with early onset PD. T-rs2583988, G-rs356219 and C-2736990 alleles were significantly more frequent in PD patients with cognitive impairments than controls in this condition. In addition, in a logistic regression model, we found an association of cognitive impairment with PD, and the practice of cognitive activity and smoking habits had a protective effect. This study shows for the first time an association of SNCA polymorphism and PD in a South-American sample. In addition, we found an interaction between SNP rs356219 and a specific clinical outcome, i.e., the increased risk for cognitive impairment in PD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...