Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15254, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956185

RESUMEN

Maritime objects frequently exhibit low-quality and insufficient feature information, particularly in complex maritime environments characterized by challenges such as small objects, waves, and reflections. This situation poses significant challenges to the development of reliable object detection including the strategies of loss function and the feature understanding capabilities in common YOLOv8 (You Only Look Once) detectors. Furthermore, the widespread adoption and unmanned operation of intelligent ships have generated increasing demands on the computational efficiency and cost of object detection hardware, necessitating the development of more lightweight network architectures. This study proposes the EL-YOLO (Efficient Lightweight You Only Look Once) algorithm based on YOLOv8, designed specifically for intelligent ship object detection. EL-YOLO incorporates novel features, including adequate wise IoU (AWIoU) for improved bounding box regression, shortcut multi-fuse neck (SMFN) for a comprehensive analysis of features, and greedy-driven filter pruning (GDFP) to achieve a streamlined and lightweight network design. The findings of this study demonstrate notable advancements in both detection accuracy and lightweight characteristics across diverse maritime scenarios. EL-YOLO exhibits superior performance in intelligent ship object detection using RGB cameras, showcasing a significant improvement compared to standard YOLOv8 models.

2.
Adv Sci (Weinh) ; 11(19): e2308095, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408137

RESUMEN

CRISPR-based gene therapies are making remarkable strides toward the clinic. But the large size of most widely used Cas endonucleases including Cas9 and Cas12a restricts their efficient delivery by the adeno-associated virus (AAV) for in vivo gene editing. Being exceptionally small, the recently engineered type V-F CRISPR-Cas12f1 systems can overcome the cargo packaging bottleneck and present as strong candidates for therapeutic applications. In this study, the pairwise editing efficiencies of different engineered Cas12f1/sgRNA scaffold combinations are systemically screened and optimized, and the CasMINI_v3.1/ge4.1 system is identified as being able to significantly boost the gene editing activity. Moreover, packaged into single AAV vectors and delivered via subretinal injection, CasMINI_v3.1/ge4.1 achieves remarkably high in vivo editing efficiencies, over 70% in transduced retinal cells. Further, the efficacy of this Cas12f1 system-based gene therapy to treat retinitis pigmentosa in RhoP23H mice is demonstrated by the therapeutic benefits achieved including rescued visual function and structural preservation. And minimal bystander editing activity is detected. This work advances and expands the therapeutic potential of the miniature Cas12f1 system to support efficient and accurate in vivo gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus , Edición Génica , Terapia Genética , Dependovirus/genética , Edición Génica/métodos , Animales , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Ratones , Vectores Genéticos/genética , Modelos Animales de Enfermedad , Retinitis Pigmentosa/terapia , Retinitis Pigmentosa/genética , Humanos
3.
Front Plant Sci ; 14: 1289959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941669

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race4 (Foc TR4) is one of the most destructive soil-borne fungal diseases and currently threatens banana production around the world. Until now, there is lack of an effective method to control banana Fusarium wilt. Therefore, it is urgent to find an effective and eco-friendly strategy against the fungal disease. In this study, a strain of Trichoderma sp. N4-3 was isolated newly from the rhizosphere soil of banana plants. The isolate was identified as Trichoderma parareesei through analysis of TEF1 and RPB2 genes as well as morphological characterization. In vitro antagonistic assay demonstrated that strain N4-3 had a broad-spectrum antifungal activity against ten selected phytopathogenic fungi. Especially, it demonstrated a strong antifungal activity against Foc TR4. The results of the dual culture assay indicated that strain N4-3 could grow rapidly during the pre-growth period, occupy the growth space, and secrete a series of cell wall-degrading enzymes upon interaction with Foc TR4. These enzymes contributed to the mycelial and spore destruction of the pathogenic fungus by hyperparasitism. Additionally, the sequenced genome proved that strain N4-3 contained 21 genes encoding chitinase and 26 genes encoding ß-1,3-glucanase. The electron microscopy results showed that theses cell wall-degrading enzymes disrupted the mycelial, spore, and cell ultrastructure of Foc TR4. A pot experiment revealed that addition of strain N4-3 significantly reduced the amount of Foc TR4 in the rhizosphere soil of bananas at 60 days post inoculation. The disease index was decreased by 45.00% and the fresh weight was increased by 63.74% in comparison to the control. Hence, Trichoderma parareesei N4-3 will be a promising biological control agents for the management of plant fungal diseases.

4.
Sci Total Environ ; 903: 166645, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37657542

RESUMEN

Bananas are the world's important fruit and staple crop in the developing countries. Cadmium (Cd) contamination in soils results in the decrease of crop yield and food safety. Bioremediation is an environmental-friendly and effective measure using Cd-tolerant plant growth promoting rhizobacteria (PGPR). In our study, a Cd-resistant PGPR Bacillus cereus 2-7 was isolated and identified from a discarded gold mine. It could produce multiple plant growth promoting biomolecules such as siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and phosphatase. The extracellular accumulation was a main manner of Cd removal. Surplus Cd induced the expression of Cd resistance/transport genes of B. cereus 2-7 to maintain the intracellular Cd homeostasis. The pot experiment showed that Cd contents decreased by 50.31 % in soil, 45.43 % in roots, 56.42 % in stems and 79.69 % in leaves after the strain 2-7 inoculation for 40 d. Bacterial inoculation alleviated the Cd-induced oxidative stress to banana plantlets, supporting by the increase of chlorophyll contents, plant height and total protein contents. The Cd remediation mechanism revealed that B. cereus 2-7 could remodel the rhizosphere bacterial community structure and improve soil enzyme activities to enhance the immobilization of Cd. Our study provides a Cd-bioremediation strategy using Cd-resistant PGPR in tropical and subtropical area.

5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768952

RESUMEN

Plant height is an important and valuable agronomic trait associated with yield and resistance to abiotic and biotic stresses. Dwarfism has positive effects on plant development and field management, especially for tall monocotyledon banana (Musa spp.). However, several key genes and their regulation mechanism of controlling plant height during banana development are unclear. In the present study, the popular cultivar 'Brazilian banana' ('BX') and its dwarf mutant ('RK') were selected to identify plant height-related genes by comparing the phenotypic and transcriptomic data. Banana seedlings with 3-4 leaves were planted in the greenhouse and field. We found that the third and fourth weeks are the key period of plant height development of the selected cultivars. A total of 4563 and 10507 differentially expressed genes (DEGs) were identified in the third and fourth weeks, respectively. Twenty modules were produced by the weighted gene co-expression network analysis (WGCNA). Eight modules were positively correlated with the plant height, and twelve other modules were negatively correlated. Combining with the analysis of DEGs and WGCNA, 13 genes in the signaling pathway of gibberellic acid (GA) and 7 genes in the signaling pathway of indole acetic acid (IAA) were identified. Hub genes related to plant height development were obtained in light of the significantly different expression levels (|log2FC| ≥ 1) at the critical stages. Moreover, GA3 treatment significantly induced the transcription expressions of the selected candidate genes, suggesting that GA signaling could play a key role in plant height development of banana. It provides an important gene resource for the regulation mechanism of banana plant development and assisted breeding of ideal plant architecture.


Asunto(s)
Musa , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Perfilación de la Expresión Génica , Transducción de Señal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Fungi (Basel) ; 8(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547623

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is one of the most destructive banana diseases in the world, which limits the development of the banana industry. Compared with traditional physical and chemical practices, biological control becomes a promising safe and efficient strategy. In this study, strain Y1-14 with strong antagonistic activity against Foc TR4 was isolated from the rhizosphere soil of a banana plantation, where no disease symptom was detected for more than ten years. The strain was identified as Streptomyces according to the morphological, physiological, and biochemical characteristics and the phylogenetic tree of 16S rRNA. Streptomyces sp. Y1-14 also showed a broad-spectrum antifungal activity against the selected 12 plant pathogenic fungi. Its extracts inhibited the growth and spore germination of Foc TR4 by destroying the integrity of the cell membrane and the ultrastructure of mycelia. Twenty-three compounds were identified by gas chromatography-mass spectrometry (GC-MS). The antifungal mechanism was investigated further by metabolomic analysis. Strain Y1-14 extracts significantly affect the carbohydrate metabolism pathway of Foc TR4 by disrupting energy metabolism.

7.
J Agric Food Chem ; 70(40): 12784-12795, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36170206

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most destructive soil-borne fungal disease. Tropical race 4 (Foc TR4), one of the strains of Foc, can infect many commercial cultivars, which represents a threat to global banana production. Currently, there are hardly any effective chemical fungicides to control the disease. To search for natural product-based fungicides for controlling banana Fusarium wilt, we identified a novel strain Streptomyces yongxingensis sp. nov. (JCM 34965) from a marine soft coral, from which a bioactive compound, niphimycin C, was isolated using an activity-guided method. Niphimycin C exhibited a strong antifungal activity against Foc TR4 with a value of 1.20 µg/mL for EC50 and obviously inhibited the mycelial growth and spore germination of Foc TR4. It caused the functional loss of mitochondria and the disorder of metabolism of Foc TR4 cells. Further study showed that niphimycin C reduced key enzyme activities of the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). It displayed broad-spectrum antifungal activities against the selected 12 phytopathogenic fungi. In pot experiments, niphimycin C reduced the disease indexes in banana plantlets and inhibited the infection of Foc TR4 in roots. Hence, niphimycin C could be a promising agrochemical fungicide for the management of fungal diseases.


Asunto(s)
Productos Biológicos , Fungicidas Industriales , Fusarium , Musa , Streptomyces , Agroquímicos , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Fusarium/genética , Perfilación de la Expresión Génica , Guanidinas , Mitocondrias , Musa/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Suelo , Ácidos Tricarboxílicos
8.
Plant Dis ; 106(1): 254-259, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34433317

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a disastrous fungal disease. Foc tropical race 4 (Foc TR4) infects almost all banana cultivars. Use of chemical fungicides caused serious environment pollution. Biological control with antagonistic microbes is a promising strategy for controlling Foc TR4. Here, strain WHL7 isolated from marine soft coral exhibited a high antifungal activity against Foc TR4. Based on the morphological and physicochemical profiles as well as the phylogenetic tree, the strain was assigned to Streptomyces sp. Fermentation broth of Streptomyces sp. WHL7 significantly increased the resistance of banana plantlets to Foc TR4 in the pot experiment. Analysis of antifungal mechanism showed that strain WHL7 extracts inhibited spore germination and mycelial growth of Foc TR4, and destroyed cell integrity and ultrastructure. Hence, Streptomyces sp. WHL7 is an important bioresource for exploring novel natural products and biofertilizer to manage Foc TR4.


Asunto(s)
Antozoos , Agentes de Control Biológico , Fusarium , Musa , Enfermedades de las Plantas , Streptomyces , Animales , Antozoos/microbiología , Fusarium/patogenicidad , Perfilación de la Expresión Génica , Musa/microbiología , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Streptomyces/fisiología
9.
Bioresour Technol ; 324: 124661, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33440312

RESUMEN

Banana residues are an important energy resource after fruit harvesting. The optionally dumping and burning causes severely environmental problems. Traditional compost efficiency was limited by lignocellulosic composition of banana residues. Inoculation with cellulase-producing microbes provides an efficient strategy for improving degradation of lignocellulosic materials. In our study, a newly isolated cellulolytic bacterium Acetobacter orientalis XJC-C with a salt and high temperature resistance was identified from a marine soft coral. By contrast, the strain can biodegrade different lignocellulosic agricultural residues, especially banana straw. The highest cellulolytic and ligninolytic enzyme activities were detected during composting at 40 days. Compared with the negative and positive control groups, the lignin degradation rate reached 76.24% in the A. orientalis XJC-C group, increased by 47.08% and 21.85%, respectively. Moreover, the strain improved significantly the metabolic activity and functional diversity of bacterial community. Hence, A. orientalis XJC-C will be a promising candidate for degrading lignocellulosic agricultural residues.


Asunto(s)
Compostaje , Musa , Acetobacter , Biomasa , Lignina , Suelo
10.
Nat Commun ; 11(1): 433, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974380

RESUMEN

Ferroptosis is a newly defined form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. Erastin, the ferroptosis activator, binds to voltage-dependent anion channels VDAC2 and VDCA3, but treatment with erastin can result in the degradation of the channels. Here, the authors show that Nedd4 is induced following erastin treatment, which leads to the ubiquitination and subsequent degradation of the channels. Depletion of Nedd4 limits the protein degradation of VDAC2/3, which increases the sensitivity of cancer cells to erastin. By understanding the molecular mechanism of erastin-induced cellular resistance, we can discover how cells adapt to new molecules to maintain homeostasis. Furthermore, erastin-induced resistance mediated by FOXM1-Nedd4-VDAC2/3 negative feedback loop provides an initial framework for creating avenues to overcome the drug resistance of ferroptosis activators.


Asunto(s)
Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Piperazinas/farmacología , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Femenino , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Proteína Forkhead Box M1/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patología , Ratones Desnudos , Proteínas de Transporte de Membrana Mitocondrial/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitinación/efectos de los fármacos , Canal Aniónico 2 Dependiente del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...